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FOREWORD

This program, the development of the isogrid design handbook, was
conducted by the McDonnell Douglas Astronautics Company at Huntington
Beach, California undcr NASA Contract NAS 8-28619. The contract was
administered under the direction of John Key, Marshall Space Flight Center,

NASA,

The McDonnell Douglas program was conducted under the direction of 3
Dr. George Moe, Director, Research and Development, with M, B, Harmon

acting as principal investigator. Dr. Robert R. Meyer was the principal

contributor to this document, being respousible for Sections 2 and 4, basic

theory and analytical techniques. Other major contributors include 1

Mr. O. P. Harwood and Mr. J. L Orlando.

The information in the document was obtained from:; {1) the results of

analysis, test, and advanced manufacturing studies of Independent Research
and Development programs, (2) a phase B space shuttle booster study funded
by the NASA Marshall Space Flight Center, (3) an isogrid tank test program
funded by the NASA Marshall Space Flight Center, and (4) the Delta program
isogrid structural tests funded by the NASA Goddard Space Flight Center.

T R Ve

Appreciation is expressed to Mr. Jack Furman of the NASA Marshall Space
Flight Center for his continued interest in the development and application of

isogrid to aerospace structures. ;
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ISOCRID DEFINITIONS

thickness of skin

width of rib web

depfh of weo

depth of flange

width of flange

t+d = plate thickness of unflanged isogrid

height of triangle

leg of triangle, i.e., distance center to center of nodes

d x- & we

¢ , . bd B
t’ t’ th ¥ ~ Th

non-dimensional parameters

2

1+ o+ [30468 + 3p01en® + 1 as® « ]

-3 fase - p(1+x)]2

bending stiffness parameter. (For unflanged isogrid, X\ =p -

BZ = [?m,(1+6)2 + (1+a) (l+a&2)].)
Et . .
3 (1 + @ +p) = extensional stiffness (u = 0 for unflanged
1-v
isogrid)

12 (l-vz)

isogrid)

3 2
< = ><1 +pa + p> bending stiffness {u = O for unflanged

t (1 + «a+p) - equivalent thickness for membrane stresses

(w0 = 0 for unflanged isogrid)

t (1 +3a + 3u) - equivalent weight thickness (s - 0 for
unflanged isogrid)

il

o,
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E*

. B
g

Equivalent thickness and Young's modulus
= to obtain correct Kand D (u = 0 for unflanged

E (1 + a +E)2 isogrid)

Use of E* and t* in monocoque equations gives correct stress

resultants, couples, strains, curvature changes and
displacements.
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Section 1

INTRODUCTION

1.1 BACKGROUND
The establishment of new, lightweight, economical, and efficient structural
concepts for aerospace structures has long been an objective of NASA and

the industry.

Lightweight, compression-load-carrying structures form part of all air-
craft, booster, and space vehicle structures. Aircraft such as the DC-6 or
DC-7 used mechanical'y attached stringer, frame, and skin construction,
which are of course 99)-degree stiifened structures. Boosters, however,
were designed as integrally stiffened structures because of leakage con-
siderations. In the Saturn vehicle, the S-1I second stage duplicated aircraft
0- to 90-degree patierns with an integral, constant-height machined pattern.
The S-IVB stage, «s well as the Thor, used square patterns rotated through
45 degrees.

The 0- to 90-denirec and 45-degree stiffening patterns used in the stages of
the Saturn vehi:le are extremely efficient in certain load regimes., However,
they are inher:ntly four bar linxs prevented from collapsing by the integral

skin and as a result have little in-plane torsional resistance capability.

In 1964, Dr., Robert R. Meycr under a NASA -MSFC contract, Reference 1-1,
set out to fiad the optimum stiffening pattern for compressively loaded
domes. A goal was to find a structural arrangement that negated the short-
comings o. the 0- to 90-degrec and 45-degree patterns without introducing
other penalties such as increased weight. The concept that was found to be
the mos'! promising was triangulation of the stiffening members. This
patterr took advantage of the simple fact that triangular trusses are very
efficient structure., This work showed significant promisec and was cxtended

to cylinders as an Independent Rescarch and Development program, After

1.0.001
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many years of development, this stiffening concept is now being used as
structure for Delta vehicle tanks and interstages (Reference 1-2), Delta

shrouds, orbital shrouds, and Orbital Workshop interiors.

The new structure is called "Isogrid' since it acts like an isotropic material,

In a recent phase B design study funded by NASA for a recoverable space
shuttle booster, isogrid (triangular integral stiffening) was used in the
fuselage design, The vehicle requirements included (1) the capability of
carrying high torques from the wings, (2) supplying multiple attach points
for an external thermal protection system, and (3) the need to resist very
high point loads from the atiaciied piggyback orbiter. The isogrid con-
struction had (1) high torsional resistance, {2) many nodal points, which
could ke used as attach points for the thermal protection system standoff
structures, and (3) the capability of resisting the orbiter attach loads with
local stiffening of the isogiid pattern and a few added internal compression
members. Full-scale and model testing was conducted to supplement test
results previously obtained for the Delta vehicle, These tests served to

verify the structural concept.

It is important to riote that studies have shown that the lowest structural cost
is associated with structure having the fewest parts. Relative costs of
major subassemblies of the Saturn S-1VB stage, Figure 1-1, are indicative
of this cost pattern, The tank cylinder was designed with integrally
machined 45-degree waffle panels to assure leak tightness, not to save
money, The cost difference between the aft skirt and interstage, both built
in the same structural style, must be attributed mainly to the installation of
equipment in non-standard fashion in the former compartment (see Fig-

ure 1-2), Evidently, these secondary functions cannct pe ignored in the
selection of a concept for primary structure., The evidence suggests that a
waffle type of structure, such as isogrid, with a pattern of rib intersections
usable for equipment attachment is an economical way to design structure if

its efficiency is to be fully realized.

1.0.002




CR169
FORWARD SKIRT SKIN AND STRINGER 38
TANK DOMES WEL.DE D MONOCOQUE 18
TANK CYLINDER WELDED INTEGRAL 10
WAFFLE
COMMON BULKHEAD 8ONDED HONE YCOMB 33
THRUST STRUCTURE SKiN AND STRINGER 49
(CONICAL)
AFT SKIRT SKIN AND STRINGER 43
INTERSTAGE SKIN AND STRINGER 14

Figure 1-1. S-IVB Relative Costs

i.2 USE OF THE HANDBOOFK
This handbook presents informat:on needed to design isogrid, triangular
integral stiffencd structures, Some key points about isogrid arc shown in

Table 1-1,

The handbook covers both unflanged and flanged isogrid with the information
on flanged isoprid being so designated,  All other information applics to

unflanged isogrid,

The basic theory for the analysis of (cogrid is presented in Section 2, The
user should acquaint himseltf with this analysis and its asswmptions betore
using the handbook, Both unflanged and flanged isogrid are coverod by this
section, The basic theory is summarized at the end of the =cction to ccrve

as a ready reference,

1.0.003
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Table i-1
ISOGRID

e A lattice of intersecting ribs forming an array of cquilateral

triangles
° Characteristics:
- Isotropic (no directions of instability or weakness)
- Poisson's ratio 1/3
- Efficient in compression and bending

° Advantapges:

- Easily analyzed

- Can be optimized for wide range of loading intensities

- Standard pattern for attachment (nodes acconminodate
equipment mounting without change)

- Readily reinforced for concentrated loads and cutouts

- Redundant load paths

- l.ess structural depth
° In use on two major rpace programs, Thor-Delta and Skylab,

and extensively investigated and tested on space shuttle study

cffort

Section 3 describes the characteristics and advantages of isogrid, including

some current and tuture applhications ‘or vehicle structure,

Section 4 presents the analysis methods Tor typical structure found in acro-
space vehicles. lypical design situations arve described for cach type of
structure, and mecthods »f optimizing the structure for minimum weight are
given where such metheds exist, The method of analysis is followed by
worked examples, which are given to guide the uscer in the application of the
equations and of the graphs, The graphs enable the user to quickly and

accurately sizc isogrid structure, The structural types presented ares

® Spherical cap with reverse pressure
o Cylinders in compression, bending
° Cylinders under torsional shear
)
1.0.006 '
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Cylinders under uniform external pressure
In-plane concentrated load in an infinite sheet
In-plane concentrated load at the edge of a sheet
Cutout reinforcement

Open isogrid shear webs

Open isogrid cylinders in compression, bending

Open and skinned isogrid plates

Other structural types such as cones have not been analyzed to date and are

not included.

To complete the sections, information is given on: (1) the minimum overall
weight for cylinders subjected to axial compression and bending, and (2) off-
optimum isogrid, Section 4,12 is a very important note on the use of the x,

y, «, and § curves to ensure accuracy.

Section 5 describes the effect of node flexibility on the local stress distri-
butions in isogrid and recommends mecthods of analysis, Section 6 presents
information on model, sub-scale, and full-scale testing. Finally, Section 7
presents information on manufacturing techniques developed on production
hardware and in advanced manufacturing research programs to date, The
topics covered are:

° Machining

° Power brake forming

° Creep and age forming

e Compound curvatures

L2

References used in the text ave listed,

This handbook is set up to allow the user to insert new pages of data or
entire new sections by using the decimal page numbers, Care should be
taken to remove obsolete material inmimediately and to add test information as
it becomes available to the user from vescarch or development in his com-

pany or NASA agency.

1.0.008
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Section 2
BASIC THEORY

The isogrid rib-grids are analyzed by '"smearing out'', averaging, or taking
mean values of the grid properties so that the gridwork is considercd as a

solid continuous sheet of material with appropriate elastic properties.

It is shown that if one assumes a uniaxial state of stress in the bars, the

smeared-out elastic constants are identical‘to those of an isotropic material

in plane stress.

When ribs and skin are combined, the composite construction is treated as
an isotropic layered material, with appropriate elastic constants for each

layer, viz., rib-grid and skin.

The key to the analysis is strain in the construction. The internal strains
in the composite construction are determined by the stress resultants and
couples in the composite construction. These relations are shown to be
isotropic in character. From the composite strains, the stresses in the
elements of the individual layers may be determined. For the bars, these
depend upon the bar orientation. For the skin, they are dependent upon the
orientation of the normal of the plane upon which the stresses are assumed

to act.

2.1 HOOKE'S LAW FOR ISOGRID RIB-GR1D
The isogrid rib pattern consists of a network of equilateral (60 degree) tri-
angles. The Hooke's law relations are developed by isolating an element of

the gridwork and assuming that the individual bars are in a state of uniaxial

stress,

2.0.001
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Element of Isogrid Rib Grid

By means of the strain transformation law,

e - € cos2 0, +Y sin @, cos 6, t e slin2 0. 2.1. 1)
X i xy i i y i

one obtains the relation between the uniaxial bar strains, e, and the x, ¥y

grid coordinate strains, e, ey and ¥_ .

xy
{
°11 1+ 0 0 "-xW
1
{e, 2 1 ¥v3 3 Yoy { (2.1.2)
1 -¥3 3
(3 ey |

Note that the strain transformation is invertable, so that if (el, e, e.;) are
known (for example from strain gage readings) then (ex, ny, ev) may be

determined, In fact,

( \
€ x 30 0 €
1 -
Nyt 3 0 2¥3 -2V3| Le,} (2.1, %)
-1 2 2 e
{"‘v 31
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The uniaxial bar loads are:

P,

1

[l

bEe .
i

i=1,2, 3

(2.1.4)

Resolutes of the bar loads in the x and y directions divided by the periodic

lengths, a and ¥3 a give the ''smeared-out' or mean value stresses in the

grid element,

Lo ZPl + (P2 + P3) cos 60° ) 4Pl + P2 + P3
X Y3a 2¥3a
. o
o (P, + P.) sin 60 _ vz (P, + P,)
y a 2a
: o
A i (PZ - P3) sin 60 i PZ - P‘3

T = T = =

xy yXx V3a 2a

Using eq. (2.1.4) and (2.1,2), these become,

L 9 bE 1 13 e,
T 2 bE
Xy yx 8 h 'xy
where
h - g—.i a, the triangle height.

(2.1.5)

(2.1.6)

(2.1.7

(2.1, 8

(2. 1.9
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By comparing eq. (2.1.8) and (2.1.9) with the Hooke's law relation for

isotropic materials in plane stress,

0’_ l v e
2l QO E 3 x (2.1.10)
%y L-volv 1) ®y
i ) E
xy Tyx ~ 2 (1+v) ny (2.1.11)

it is evident that eq. (2.1.8), (2.1.9) are a special case of (2.1. 10), (2.1.11)

whe e
v L
(2.1.12)
. b
E hE

and the barred quantitics indicate the equivalent Poisson's ratio and Young's

modulus of the gridwork,

2.2 ENXTENSIONA L AND BENDING STIFFNESS FOR
COMPOSITE RIB-GRID AND SKIN CONSTRUCTIONS

Many con-tructions may be idealized as elastic plates and shells. This con-
cept is a two-dimensional approximation of three-dimensional elasticity,
which replaces the threc-diimensional body by a two-dimensional surface.
The loading on the surface is considered to be resisted by stress resultants

and stress couples obtained by integrating the stresses and moments in the

thickness direction, o
y
Ny My
v y
Nyx My x
Qy
z Nxy
M
N' z X
N x Mlv

STRESS RESULTANTS STRESS COUPLES ON

ON REFERENCE SURFACE PEFERENCE BURFACE x

ELEMENT ELEMENT

2.0.004
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These are computed per unit length of the reference surface coordinates, x

and y. If the small differences in length of a surface parallel to the refer-
ence surface at a distance Z from the reference surface is neglected, these

stress resultants and counles may be written as follows.,

N o
X X
N T
Xy xy
) NY L - f oy ¥ dz (2.2.1)
Qx 7z Tz2x
Qy Tzy
\ J )
Mx 0y
-M = ] T ZdZ (2¢ 2- 2)
Xy Xy
M
y 7z Oy
where
= N and M = M
Xy x yx

n \

“x () ‘ € x (Xx

Py 213 = Iy 4 -2 Lax (2.2.3)
¢ (2) ¢ X

AN V) \ Y

where (¢ , Y , ¢ ) are reference surface strains and (X, 2X , X ) are
X xy Y X Y

Xy
reference surface changes of curvature, together with the appropriate

Hooke's law relation for eacih layer, The relations between stress results
and couples and reference surface strains and changes of curvature may be

expressed in the following form,



e aiade i mw -

(
Nx ‘ K vvK 0 0 r‘x‘
Ny vk K 0 0 ‘Y
X 0 0 vb D X
{-M X
y ) y )

, ’ : (2.2.5)
: M M ' ¢ L0 DJ {ax
} X yx Xy
z K is the extensicaci sti‘fness,
t
§
; . 1
: K« — E (2) dz (2.2,6)
. 1 -v
‘ D is the bending stiffness
! 1 ) 2 ,
D - — ]L(z)zdz (2.2.7
1 -v . *,
and the reference surface has been chosen so that
j E(z) zdz = 0 (2.2.8)
z

E(z) of course is the appropriate Young's modulus of ribs or skin as a

function of the thickness coordinate, z.

The integrals (2.2.6) - (2. 2. 8) may be evaluated geometrically by a device

known as the method of the "transformed section,"

Let Eg be a constant reference modulus.

E
K - _&[[%‘sz (2.2.9)

1 -v o /

|
i
:

2
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E (2.2,10)

0 :[ =) L2,
[0}

(2.2,11)

ke

The quantity E(z)/Eo may now be thought of as a ""transformed width" of the
unit section. It is convenient to take EO as the modulus of the skin., The skin
} width will then be 1, 00, Only the rib will be transformed,

1.00

@ t

| ©) ar2 T¢
&

d/2
® ¢

W/h ?

TRANSFORMED SECTION OF ISOGRID WITH FLANGE

Let

t = skin thickness

b, d = rib web thickness and depth

j
w, ¢ = flange width and depth

h = triangle height

2.0.007
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The transformed rib width is b/h. The transformed flange width is w/h,
Choose an initial normal coordinate, ¢, from the midpoint of the rib web.

The final normal coordinate, z, will be chosen io satisfy the condition,

I%ﬁ zdz = 0

(o]
z

This is equivalent to saying that z = 0 is the centroid of the transformed

section.

Define the following non-dimensional parameters.

d = ot
c = A\t
_ bd
* = th
. owe
B T th

Using the parallel axis theorem, a tabular analysis of the geometric proper-

ties of the transformed section appears as follows:

St Sl e halhash el

Part Ai gi Aig‘ Aigi o 12

O ——

(1+6) 22-(1+5) t-;}-(ua)z Lo

-
[o5F Lot

2 3
t t 21t 2
tp -3 (140 -5 p (N b w1y B )

®
@ ta 0 0 0 Ei.% (6t)2
©,

3 2
z |ta+atp) ‘;[ma) - u1+n)] -%—[‘“6’ ':1—32[1+a62+p\ ]
w0+
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b -
I :ZAigi 4.21(“-Ag
i

1

A and I are respectively the area and moment of inertia of the transformed

sectio .
A = t(l +atp)

 [(116) - 4(140]

E ) 1 +a+yp
2
. [i1e6) - w(1+N] l
t 2 2 2 2 ) )
I T3 1310 + 3 (LANT 4 L+ adT N - R ’
or
3 52
I - t_p
12 (1 + ot p)’
where

2 . 2 2 2 2 2
B (1 +atp) [5(1-96) P30T+ 1+ ab” bpn ] - 3[(148) - p(iN]

The number of independent non-dimensional parameoters is four: a, 65, \,

and p.

Y




From eq. (2.2.9) and {2.2.10) one obtains

D - 2E I
(2.2.12)
K = %EOA
since
v = 1/3,

The foregoing analysis assumes that the Poisson's ratio of the skin material
is also 1/3. If this condition is not satisfied, it will not be possible to
express eq. (2,2.4) and (2.2.5) in the simple form shown, Reference 2-1.

For aluminum materials v = 1/3,

Certain small terms not obtainable from the foregoing integration process
and arising from the twisting rigidities of the bars may be added to
eq. (2.2.4) and (2.2.5). For thin rib, these terms are negligible,

Reference 2-1,

z.3 NON-DIMENSIONAL STIFFNESSES FOR UNFLANGED
ISOGRID

For unflanged isogrid, X =u = 0 in the equations developed for flanged isogrid

on the preceding pages.

2 , 1/2
B = Bla,d) = [3a(148)" + (1+a) (1+ab7)] (2.3.1)

For construction consisting of skin alone (monocoque),

(2.3.2)

2.0.010




In terms of v and B,

E t

K = (1+a) (2.3, 3)
l-v
Eot3 62

D - (2.3.4)
lZ(l-vz) l+a

It will be noted that E 1:/l-vz and E t3/12(1 uz) are the extensional and
bendmg stiffnesses of the skin alone, while the non-dimensional factors (1+a)

and [3 /(1+a) represent the relative increases in extensional and bending stiff-

nesses due to the ribs.

A plot of B(e,5) is shown in Figure 2-1, This graph is useful when B is known

and it is required to determine a and 6,

Suppose, for example, the required D and t are known. Then,

L%
|
O

]

Pt
<+
)

where C is some constant value. Solving for B,

B = \/C(l+a)

If this relation is plotted on transparent paper to the same B, a scale as the

B(a, 6) graph and superimposed on the B(a, o) graph, acceptable values of a

and b may be read off.

The B(@, b) graph will also be found very useful for off-optimum perturtation

from optimum construction,

2,4 MEMBRANE STRESSES
For many conditions the changes of curvature and associated bending stresses

are negligible., The imnembrane stresses may be determined by simple

2.0.011
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equilibrium conditions or may be known from plane stress solutions in

classical elasticity, Reference 2-2,

as given,

N
X

N
y

while

and

K =

a—

Thus N , N
X X

and N

may be regarded

The problem now is to solve for the skin and rib stresses.

Eq. (2.2.4) reduces to,

9

8

_ K[l 1/3] e,

L1/3 1

Et(1+

)

e
y

solving for the strains,

Y
Xy

1

1 -1/3
Et(l+a) -1/3 1

' N
8 __xy
3 Et(l+a)

2,4,1 Skin Stresses

|

X

These are given by this Hooke's law relation for the skin,

I - =

R

2.0.01s

(2.4.1)

(2.4.2)

(2. 4.3)

(2.4.4)

(2. 4.5)

(2.4.6)

(2.4.7)
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By use of (2.4.4) and (2.4, 5) one obtains the skin stresses, ¢, ¢, T -

x' %y Txy
Gx 1 NX
i} . 2.4,8
o t(l+a) |N ( )
y
. S (2.4.9)
Xy t(l+a) “xy :
If the quantity tef’ = t{l+a) is defined, then, (2.4.10)
N N N_
¢ - —=, a = X, T 7T y (2.4.11)
X eff Y eff Y eff

These stresses must be equal to or less than the allowable stresses in the
construction., If the stresses are tensile, they may be compared with yield
or ultimate allowable stress., Tf the stresses are compressive, one may
consider constructions with buckled or unbuckled skin. In the case of
buckled skin, the problem is to determine the effective stiffness of the panel,
One may use effective width concepts in this case where the effective skin
material is treated as a porticon of this rib, In the case of unbuckled skin,
the problem is to determine the buckling allowable in the skin panel. This
depends upon the size of the triangle, the skin thickness, the stress field in
the skin, Young's modulus and the edge fixity of the triangle. The edge
fixity, in turn, depends upon the geometry of the ribs and the stress ficld in
the ribs, Some tests have been conducted to determine conservative esti-

mates of edge fixity and more are under deveclopment,

Triangle sizes will vary considerably depending upon buckled or unbuckled

skin requirements and edge fixity values,

2.4.3 Rib Stresses

The rib stresses are a little more complicated than the skin stresses, This

is due to the fact that the bars are not all oriented in the coordinate directions

x and y.

20.014




From eq. (2.1.3) and (2.1.4),

Pl
Gl:T:Eex
P
2 _E
o, = 5 C 4(ex+~fsxxy+3ey)
P
3 E
= — = = - 3
oy 5 4“ex N3 ny+ ey)

Using eq. (2.4.1) and (2.4.2) these become,

1

o, = siray Nk o Ny
6. - —E— (N + N3N_) (2.4.12)
2 3t (1+a) y Xy ° e
6 - ——fm (N - A3N__)
3 3t (1+a) 'y xy
One notes that if Nx and Ny are principal stress resultants, ny =0
R 1
% 7 Hite -(Nx 3 Ny)
(2.4.13)
. . 2 :
o, * 93 ° TTia) y
If, in addition, N_ = 0, theno, = ¢, =0
y 2 3
and
Nx
o T (2.4.14)

teff

Note in the application of cq. (2.4.12) that the | bar is oriented in the direc-

tion of the x axis and that the 2 and 3 bars are at +h0 degrees to the x axis,

see sketch on Page 2.0,019.

2,0.01%
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¢ For example, consider a cylinder with internal pressure with one set of ribs
in the circumferential direction. In this case, x is the hoop coordinate and

y is the longitudinal coordinate.

Nx = pR,
N - PR
y 2"’
N = 0
Xy
and,
x eff

eff

5 pR

o TG e,

1 6 teff
R
92 7 9% ° §tp—
eff

2.5 EQUIVALENT MONOCOQUE E* AND tx*
Because of the isotropic properties of the construction, it is possible to use

all the established isotropic solutions from extensively developed theory for

plates and shells, References 2-2 to 2-8.

In many casecs, these are expressed in terms of the bending and extensional
stiffness. In other cases, however, the solutions have been reduced to more
primitive parameters. For such cases, it is possible to determine «n
equivalent monocoque thickness, t* and Young's modulus, E%*, which will

give the same bending and extensional stiffnesses as (2.2.7) and (2.2.6).

2.0.01¢
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Thus,
o b E A E t
K = E——%_ - =2 - =% (1+a)
l1-v l1-v 1-v
3 E I E t 2
) DRI 33
p = EXt: . _o_ . ! £ (2.5.2)

2
12(1-v%) 1-v© 12(1-v%) 11@

where A and I are the transformed area and moment of inertia and where the

expressions in @ and  arce valid for unflanged isogrid.

Solving (2. 5.1) and (2. 5. 2) for t* and E*,

P LZ—I- _g.—
te = \’A = t1+a (2.5.3)

L2
Ex - Etﬁ - Eil—‘ﬁﬂ- (2.5.4)

Note that once again, the first factor pertains to the skin property and that
the second non-dimensional factor represents the influence of the rib grid.
Thus for no ribs,

te o=t

E N

E
Since @ = 0 and B = 1 for no ribs.
In using eq. (2.5.3) and (2.5.4) a word of caution is required, Since t* and

E’* reproduce the requircd bending and extensional stiffnesses, D and K,

it is important to note that these are related to stress resultants and stress

couples only and not to strcsses. Thus, the equations into which t* and E*

are to be substituted must be cxpressed in terms of stress resultants and

couples,

2.0.017
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B = 16

Thus,

Dopt

O E (16)2
12(1-v%) | 144

oS WETETET RN ey g T PR TR T M ST

geometrically related to strains,

a = 1/3’

Since the equivalent weight thickness, t, is given by
t = t(1+3a)

thie implies an equal distribution of rib and skin material.

_ 3 _

16(4 t) = 12t
_ &(; )_L
_(9) 16E_9Eo
. Egt (i)
= 3

l-v2

3

3

E t

— 192
12(1-v7)

Use of t* and E* for deflections is also permissible since deflections are

To obtain a quantitative idea of the magnitude of t* and E¥, it is found by

experience that for many optimum constructions, one has approximately,

(2.5.6)

(2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

PSS

oy




Thus the extensional stiffness for many optimized constructions is increased

by a factor of 4/3, and the bending stiffness is increased by a factor of 192

by the addition of an equal weight of material in ribs to the original skin

material,

2.6 SUMMARY OF BASIC THEORY

2
*
1 y
3 x >

RIB ORIENTATIONS COORDINATES

GRID GEOMETRY

2.6.1 Non-dimensional Paramcters

, . bd
th’

8- 4,
t

1/2
p = [30(14-6)Z + (1t (Hm‘.d)]

2.0.019
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2.6.2 Grid Moduli

=
1
o

E,

2.6.3 Rigidities

?
i
¥
¥
i
}
:

Extensional, K

) ) -9
K = 3 ]E(z) dz = gEA = FE_t(1+a)
2
Bending, D
3
E t 2
9 2, _9g;.2ZC (‘3 )
D =3 fE(z)Zdz =8Bl " 3712 \1+a
z
Neutral Axis
fE(z) 2dz = 0 = centroid of transformed area, A.
Z

2.6.4 Equivalent t* and E*

g = l—'z—I'—t—L

A l+a
A

Ex = Bow * Eo 75

2,6,5 Composite Stress-Strain Relations

| N, 1 1/3 {"x}
. = K
: Ny 173 1 | %y

2,0.020
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Mx 1 1/3 Xy
=-D
My 1/3 1 Xy
N = Sy
xy 3 'xy
_ D
Mxy = 3 (ZXxy)

2.6.6 Membrane Skin Stresses

N
¢ = =,
x et
N
g = -t—z',
y eff
N
.5 4
- =
XY tetf
togf ° t(l+a) = A = Transformed area

2.6.7 Membrane Rib Stresses

1 1
¢ = e (N -=N)
1 teff x 3y

Q
f

2. (N + "IN
X

)
2 31:(3ff y y

2
0. =

37 Bty (N - VIN, )

2.6.8 Equivalent Weight Thickness

E = t(l+3a)

2.0.021
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Section 3
ISOGRID CHARACTERISTICS AND ADVANTAGES

Isogrid is a lattice of stiffening ribs forming an array of contiguous
equilateral triangles. This is the simplest arrangement of bar elements that
exhibits isotropic properties, hence the name "isogrid". Intersecting ribs
so arranged make a complete structure whether attached to a skin as

stiffening or used as an open lattice.

Because of the isotropic property and an effective Poisson's ratio of 1/3,
like most homogeneous structural metals, isogrid can be mathematically
transformed to an equivalent homogeneous material layer (see Figure 3-1).
The transformed expression can be substituted in:o the shell equations in
available literature to analyze the gross behavior of isogrid structures.
More detailed finite element analysis is needed to examine local stresses in

the critical areas of nodal intersections and the bars.

CR169
E' =Eq b/b
E2 = 0.21106)
Eq=1.0(108)
£ = 10 (108)
-bg = 0.10
. b2 = 0 EQUIVALENT 3-LAYER
- — SANDWICH
1SOGRID PLATE
Figure 3-1. Isogrid Is Simple to Analyze
3.0.001




Being easy to analyze, the construction is also readily optimized as will be
shown in Section 4. Pasic structure sizing over a wide range of load
intensities can be accomplished rapidly, allowing a quick and accurate study
of the effect of standardizing geometry. As shown in Section 4-13, this
technique has beeu applied to a large integrally stiffened propellant tank to
prove that the penalty of geometric standardization is very small — about half

of one percent, in a recent phase B shuttle design.

As originally applied in a hardware program (the Orbital Workshop module
of the Skylab), isogrid open lattice of standardized geometry forms the walls
and floors of the crew quarters and internal experiment space. The intention
here was to provide a '"pegboard' pattern of equipment mounting points,
readily adaptable to change, As can be seen in Figures 3-2 and 3-3, the
equipment components are attached at the waffle nodes without structural
rework. It is evident that removal of the mounted equipment leaves the sub-
structure exactly as it was, permitting installation of any other installation
designed to fit the pattern, This scheme has advantages for a long-term
space base that will be periodically refurbished and updated with newly

developed advanced equipment.

The design requirement for this construction was a limit load capability of
250 pounds applied normal to the surface at any nodal point, Failure occurred
at 750 pounds in static test although the panels are equivalent in weight to a
continuous 0.025 aluminum sheet (0. 36 pounds per square foot). The geom-

etry is depicted in Figure 3-4.

While substantial local load capability is inherent in unreinforced isogrid,
occasionally local reinforcement is required to handle large concentrated
loads. How this can be accomplished with minimum weight is shown in Sub-
sections 4.5 and 4.6, As an example of the efficiency provided by ribs and
skin working together dissipating load, an 8-foot-diameter cylinder designed
for a compressive load intensity of 2, 500 pounds per inch required only

4.3 pounds of additional weight to handle a concentrated tangential load of
ZO,"OOO pounds, This was distributed within a hexagon 24 inches across the

flat (see Figure 3-5).

3.0.002




Figure 3-2. Distributing Concentrated Load
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Figure 3-3. Equipment Attached to Nodes
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o WEIGHT EQUIVALENT TO
0.025 SHEET
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Figure 3-4. Skylab Floor and Wali Grid

As has been mentioned, the isogrid lattice is a complete structure by itself:
that is, it can effectively resist tension, compression, shear, and bending

loads. Stiffened by such a lattice, a skin has the same capabilities. There-
fore, either skin or lattice can be locally reinforced to handle local loads or
discontinuities from cutouts, This choice offers more design flexibility than

available with rectangular stiffening systems,

Similarly, this redundancy should offer exceptional opportunities to design
fail-safe structure. If, for example, the lattice is made separate from the
skin and then assembled to it, a crack in either lattice or skin cannot be
propagated across the joint, Shear and t-nsile loads in the skin can be
carried around the flaw by the redundant lattice system. Since this is not the
case with present rectangular stiffening systems, it should be possible to

obtain fail-safe design at lower weight in isogrid, Figure 3-6,

3.0.006
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F.gure 3-5 Renforced Hole for Concentrated Load
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Figure 3-6. Fail-Safe Concept

The rib lattice, carrying shear load and with its centroid spaced away from
the skin, in effect forms a second surface of a torque box, Therefore,
triangularly stiffened panels are torsionally stiff. This means that situations
where torsional stiffness is needed can be met with an isogrid open con-
struction instead of a closed torque box, The advantages of inspectability,
access to all surfaces, and elimination of moisture entrapment are obvious,
This kind of design can be applied to structural components such as access
doors, landing gear doors, door jambs, and speed brakes. Figures 3-7 and

3-8 show typical examples,

In compression-loaded cylinders, isogrid has been found advantageous in
another respect: it occupies less depth for the same compressive capability
as a rectangular stiffening system. This is true in the case when both kinds
of stiffening are in the form of constant depth waffle, even more so when the
orthotropic construction is optimum — with frames deeper than the stringers,
In a purely structural sense this is not important, but many designs require
clear space inside the frames. The deeper they are, the larger the con-

taining shell and therefore the weight, As an example, a recent study

3.0.007
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substituted isogrid for conventional construction in a transport airplane,

permitting reduction in fuselage structural depth from 4 inches to 1.5 inches.

The depth of construction noted above was that obtained by the simple optimi-
zation technique described in Subsection 4,2, Both weight efficiency and
structural space efficiency can be improved if the isogrid ribs are flanged.
This was proved in a space shuttle booster study where the depth of construc-
tion for a 198-inch radius and 10, 000 pounds per inch compressive loading
was 2,25 inches, Figures 3-9 and 3-10 show manufacturing samples of this
construction and a larger formability test specimen. The analysis does not
in this case optimize in a single step with a unique solution, Iterative
techniques must be employed., As a design progresses from the preliminary

sizing to the final configuration, refinements of this kind are in order.
The practical applications of the advantages of isogrid mentioned above are

a few of the cases so far encountered, More are sure to be uncovered with

time,
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Section 4
ANALYTICAL TECHNIQUES

4.1 SPHERICAL CAP WITH REVERSED PRESSURE

The spherical cap with reversed pressure consists of a portion of a sphere

cut off by a plane and loaded by uniform external pressure.

The load/in. in the sphere is uniform in all directions and is given by the

equation,

4.1.1 Typical Design Situations

This situation in design occurs most frequently for common bulkheads used
for separating propellants, such as LOX and LH, tanks. Considerable vehicle
length and skirt material may frequently be saved by such designs. Gener-
ally, the bulkheads are designed for tension. For some loading procedures,
however, reversed compressive pressure may act upon the bulkhead so that

it must also be dcsigned for stability under the compression loading. *

[t was this design condition which initiated the development of isogrid in
1964. (Reference 2-9)
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Other design possibilities might be spherical end closures in cylinders
subjected to external hydrcstatic pressure such as vacuum tanks or

submersibles.

4.1.2 Method of Optimization

The optimization technique used assumed that minimum weight occurs when

all modes of buckling i. e., general instability, rib-crippling, and skin buck-

ling are equally likely. This optimization principle is popularly known as the

'one-horse shay'' design principle. It assumes, in particular, that the var-

ious modes of buckling failure are uncoupled.

General Instability
Buckling of a complete sphere may be written in the form, Reference 2-4,

_ 1 E t

Ncr(l) = R (4.1.1)
3 (1 -v)

Since eq. (4.1.1) is in the form of a stress resultant, the equivalent t*

and E* of (2.5.3) and (2. 5.4) may be used to transform (4.1.1) into an

isogrid formula.

£ :::2
N (1) 1 E t

cr R
\13 (1 - v3
g2 (1+0)° N

= 5 5
’3(1_v2) (1 +a)

Et2

L)
3(1 - v9)

(4.1.2)
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This equation shows the typical form of iscgrid equations using a, B and 6, in
chat the first factor gives the strength of the skin and the second factor shows

the nondimensional increase due to the addition of the ribs. For typical

optimum designs, f = 16.

Since test values generally fall below theory, it is customary t> apply a

"knockdown'' or ''correlation factor,' Y, to eq. (4.1.2), Reference 2-8.

2
B Y Et
N = > R P
3 (1 - v9)
2
_ Et
N_ (1) = ¢y =58 (4.1.3)

With a proper interpretation of <, to account for the reduction due to boundary

effects, eq. (4.1.3) may also be used for spherical caps under external

pressure.

Skin Buckling
From Reference 2-9, the buckling stress in an equilateral triangie under

equal biaxial loading with simply supported edges is given by the equation,

kK °E 2
. = qf”“__(%) (4.1. 4

kK = 5.0
[of
Thus
,
kc " _ 5.0 "Z
= - T 4.62
12 (1 - v9) 12(9)
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From eq. (2.4.11) the skin stress in terms of the pressure is:

P
_ N, 5 5
% © Gy T2t (1 ta) (4.1.5)
Using eq. (4.1.4),
P R 2
_ cr _ t
N_(2) = —— = 4.62Et(1+a)(a)
t2
N (2) = ¢, Et(l +o0) = (4.1.6)
cr 1 hZ

where

_ 2
B _ -
(.1 = ( 2 ) 4.62 = 3.4|

Rib Crippling

From Reference 2-4, the buckling stress in a long plate simply supported
on three edge: and free on the fourth edge is,

kc nZE (b)Z
¢ = =y (4.1.7)
cr 12 (1 - VZ) d
k = 0.456
Thus
2

k n - 2

c > - 0.4)6877 - 0.422
12 (1 - V9 12 -9-)
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From eq. (2.4.12) for

P..R
N = N = =< = N (3)
x y 2 cr
N =20
Xy
e = G = 6. = o, = —2 N (3 (4.1.8)
cr 1 2 3 3t (1 +a) " cr c
Using (4.1.7),
2=
3 b
= - { e
N_.(3) Zt\l+o){:0.422E(d) |
2
b
= ¢,Et(l1+0)(3) (4.1.9)
c. = (0.422) = 0.634
2 2 . o U

Optimum Requirements

Collecting formulas, one now has the system of equations,

(4.1.10)

t2
ClEt(l+a)—Z
h

2

Et(l+a)b—2 (4.1.12)
d

Ncr(3) = C,

For optimum requirements, (4.1.10) to {4, 1. 12) must be simultaneously

. satisfied. Now these equations are indeterminate, in that four parameters

are to be determined, b, d, t, and h, while only three equations are given,




As a fourth equution, one may consider the burst condition,

R

F,, = 2?‘(1%07) (4.1.13)

where p is the burst pressure and Ftu is the tensile strength of the material.
Strictly speaking, eq. (4.1.13) holds only in the elastic region of loading.
Its use for burst conditions is conservative, since in the plastic state the

ribs will be more highly loaded than for elastic predictions.

It will be found fcr many design conditions that pressures higher than those

given by use of eq. (4.1.13) will yield lower weight designs! For example,

there may be no internal pressure. Obviously, some finite skin thickness,
t, is required while use of eq. (4.1.13) will give t = 0. The physical inter-
pretation of this phenomenon is that highier pressures mean thicker skins.
which in turn implies larger grid sizes, a, sc that deeper ribs may result
for a given amount of rib material. This will occur for increasing pres-
sures until the increase in skin weight counteracts the increase in general

instability due to deeper ribs.

As a consequence, an optimum burst pressure exists which divides all

designs into two classes. In the first class are all designs whose burst pres-
sure is less than the optimum pressure. These designs are called ' com-

pression-critical" designs. They will have the very desirable property that

burst margins are in excess of requirements. This can be a very important
effect for prevention of critical growth of flaws in cyclic loading. In the
second class are all designs whose optimum pressure is less than the burst
pressure. Inthese cases, the burst pressure dominates. These designs

are called '"pressure-critical. "

To solve eq. (4.1.10) ~ (4.1.13) simultaneously, introduce the non-dimensional

loading parameter, N,

_ P (F
N - —é—’;(—tl’-) (4.1. 14)

P

:
1
:

e et 8 M s A <« e ek e B a3t ok .




from (4.1.11), (4.1.12) and (4. 1.14),
— t 2
N - Cl(B’) (4.1.15)

From (4.1.12), (4.1.13) and (4.1. 14),

N = cz(-g-) (4.1.16)

4
-2 bt bd)/t)
= N = ¢,c, —— = c.c — -
192 | 2,2 lz(th \3
2
- = %% 7

Thus, since ¢ and & are positive,

N - _——
N = Vei¢; ?2- . (4.1.17)

Eq. (4.1.17) satisfies the conditions of simultaneous rib-crippling, skin

buckling,and burst,

From eq. (4.1.10), (4.1.13) and (4. 1. 14),

N t g P g
N = ¢, = = ¢
tu
or
F
= tn p
2N p < CO m (4.1.18)
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Eq. (4.1.18) satisfies the condition of simultaneous general instability and

burst.

If the non-dimensional loading parameters

K m (103) (4.1.19)

'CICP

F
y = it (4.1.20)

< = -% (103) (4.1.21)
6
y = — (4.1.22)

(1 +0)2

It is noteworthy that the right-hand sides of these equations are pure func-
tions of the geometry. Boundary conditions for the plate elements and
correlation factor are not involved. For this reason it is convenient to stop
at this point and consider the solution as a mapping of the a, ¢ domain into
the x, y domain instead of attempting a simultaneous solution. The mapping

solution will thus have a validity that is independent of ¢y, ¢, and cj.
The equivalent weight thickness, t, is,

t = t(1 ¢ 30)

Using eq. (4.1.13) this becomes,

ry pR(1 + 30)

= - , 1,0.,
ZI-tuH b o)
t p 1 + 3a
R TF <l+a> (4.1.23%)
tu
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One now has the complete solution in terms of the nondimensional loading

parameters, p/ F, = and p cr/ E.

By varying p/ F, ~ for a given value of p cr/ E, the nondimensional weight

curve may be constructed.

4

t
R ‘-’g GIVEN

)
\

MINIMUM WEIGHT CURVE

Define the pressure for (tmin/R) as p_. f (tmin/R), and (po/Ftu)_are
computed for a sequence of values of (pcr/E), a master curve of (tmin/R)'
and associated optimum pressures, (p,/F¢ty) may be constructed. The graph
is given in Figure 4, 1-1. As may be seen, these curves plot as straight lines

on log-log graph paper.

If only (tmin/R) is desired and if p/Ftu < po/Ftu this graph is sufficient.
Such information is usually all that is required in preliminary design weight
studies. On the other hand, if the complete geometry is required, o-if the
design burst pressure, p, is greater than the minimum weight pressure, pg,

i.e., if the design is pressure critical, it will be necessary to use the x,

y; o, b, graph given on Figure 4, 1-2 to obtain t, This is done in the following

steps:

A. Compute x «nd y and from the graph read off the corresronding o

and

4.1.009
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B. t maynow be computed from the burst condition or from the minimum

weight pressure, p,.

PR

t=2Ftu(l+a) (4. 1.24)
- C. Knowing t, the triangle height, h may be computed from eq. (4. 1. 15).
1
h = Tt (4.1.25)
D. The rib depth, d, is given by t and &,
d = &t (4.1.26)

E. The rib width, b, is computed from eq. (4.1.16).

b = ’_Ii.d (4.1.27)
€2

As a check on the computed values, the ratio, bd/th, should agree with the

value of a read off the x,y; o, 6 graph.

Finally, the value to be used for the correlation factor, Y, may be taken
from Reference 2-8 as a function of the ratio, t*/R for lightly stiffened
domes. For heavily stiffened domes the result of test in Reference 1-1,
gives,

<
1

0. 425

C

o 0.612 Y =0, 260

This is the value used for the x,y; o, & curve in Figure 4. 1.2,

4.1.012




4.1.3 Worked Examples

Worked Example 1

Per = 21 psi

Phurst - 60 psi

R = 96 in,

E =11.6 (106) psi

F = 78.5 ksi

tu

P

cr _21 -6, -6
£ _11.6(10 ) = 1.81 (10 ™)

From graph,

F

P T,
[ Po )103 - 1.12 -min = 0.000805
tu

P, = 1.12 (78.5) = 87.9 psi 60.0 ps=i.

The design is compression-critical and the (tmin/R) value is valid.

T . =0.000805x 96 = 0.0772 in.
min —_—

If this is all that is desired, the analysis is completed. However, if the

geometry is required,

1.617 (107 3)

_ P F \ -6
5 . Per ( tu) _ 1.81 (10°°)
/

E \pr, 1.12 (107 3)

— 3
_Naod) 1617
X *T1.482 - 1.48% - 1.09

4.1.013
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R =1.617(10'3)[103]
Y 7 0.130\p 0. 130 1.12

From graph, o =0.275 6= 16

P R -3
. o 1,12 (107°) (96) _ .
T ZF, () 7 (1.275) 0.0422 in.

d = 6t = 16 (0,0422) = 0.675 in.

’ 1.617
\[0634 (0.675)

= 0.0505 (0.675) = 0.0341

NN T A J 241 (10%) (0. 0422)

= 46.3 (0.0422) = 1,95 in,

Q<2(1.95) .
J— —1.732 = 2,25 in.

As a check,

bd _ 0.0341 (0.675)

th ~ 0 0422 (1.95 - 0-280

This is very close to the graph value, a=0.275. As a check on the .t—min

value,

t (1+ 2¢) =0,0422 [1 +3 (0.280))

= 0,0777 in.

4.1.0%4




Use of the burst pressure, 60 psi, instead of the optimum pressure,
87.9 psi, would have resulted in thinner skin, smaller triangles,and heavier

weight.

Wor ked Example 2

Per = 8 psl,

Phurst - 75 psi,

R = 120 in.

E =11 (106) psi,

Ftu = 76 ksi,

pér = i—%—(ln"é) = 0.726 (10_6)

From graph,

po 3 -
F 10° = 0.644 (f_. /R) = 0.090466
tu min

P, = 0.644 (76) = 48.9 psi, < 75 psi.

This design is pressure-critical since the minimum weight pressure is less

than the burst pressure. Inthis case it will be necessary to use the o,

& curves to obtain t.

_ Por (Fiu)e 0,726 (10-° [76(103)
1‘“'?:—(‘;7‘i 726 11076 [1430)

3

0.735 (107°)

= (103
_N(0°) _0.735 _ o 406

b
1

1.482  1.482




O F Fu 0.735(10'3)[76 (103)]
Y °0.130 p ° 0.130 75

=5,73

From graph, ¢ =0.066, &6=11.6

i PR __75(120) (1073
2F, (1+a)  2(76) (1.086)

"

0.555 in.

o
tl

6t = 11,6 (0.0555) = 0,644 in,

_ ’ N _ [7.35 (107%
b= Ngg3z ¢ "\/_'6._6'3T‘ (0. 644)

0.0341 (0.,644) = 0,219 in,

_ 3.47 - 3.47 3
h = /———_N_ t = \/-——-—0.735 (107) (0. 0555)
= 68.8 (0.0555) = 3,82 in,
_2h 2 (3.82) .
a =BT = 4,41 in.
As a check,

bd _ 0.0219 (0.644)_
th ~ 0.0555 (3.82) 0.0666

This is close to the graph value, o = 0,066,

The t is given by,

t=t(1l+3e)=0,05551[1 +3 (0,0666))
=0.0666 in.
4.1.016
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If the design had been compression-critical, one would have had,

T . =0.000466 (120) = 0,0560 in,
min. ————— e

It will be found, for many designs, that the t/R curve is fairly flat beyond
the optimum po/Ftu pressure. This mcans that the skins may be made
somewhat thicker than optimum so that larger grid sizes result without

excessive weight penalties.

4.1.4 Spherical Grid Layout
The analysis leading to the tables used to lay out the grid is described in

detail in Reference 1-1,

The tables developed there and the description of their usage is repeated

here for convenience.

Lavout of Isogrid

The layout of the triangular gridwork on the spherical surface is accom-

plished by the following routine.

Consider an icosahedron inscribed in the spherical surface. This regular
geometric solid has 20 equilateral triangular faces and is shown in the

figure.




e g AP, NS

cew s

A typical face is labeled NAB, where N is the apex (North Pole) of the sphere.
A view of the equilateral triangular whose base plane is NAB is shown in the

figure as seen from the apex, N.

The midpoint of the arcs NA, AB, BN, are designated as C, E, and D. This
further subdivides the basic triangle into one central equilateral triangle CED,
and three congruent isosceles spherical triangles NCD, AEC, and BDE. The
arc lengths, a and b, are symmetrically subdivided from each vertex, i.e.

from N or C, etc. and are labeled a;, bi for n subdivisions.

From each vertex, corresponding points along the adjacent arcs are con-

nected by great circles.

The arcs will intersect in points which define the vertices of the elementary
triangles.

4.1.018




;

The subdivision as bi have been computed for unit radius, for n = 5 to 20,
and are shown, cumulatively added from a vertex, in Table 4-1, to facilitate

layout.
For spheres of radius R, multiply tabular values by R.

4.1.5 Summary of Design Equations for Spherical Cap

Ref. Page
C, = 0. 260 4.1.012
C, = 3.47 4.1.004
C,=0.634 4.1.005
Ref. Eq.
_ P F
N =-°—r-(-—ti) (4.1.14)
E \p
< (103
x =_1\_11__(£7)_ (4.1.19)
— P‘
N (tu
Y = 5135 ( = ) (4. 1.20)
_ PR
t = (4.1.13)
ZF,, (1 +0)
Ref. Eq.
d = &t (4.1, 26)
b= N_ 4 (4.1.27)
* "N D.%532 -1
o= |23 (4.1.25)
N
As a check,
o = Pd
th
t =t (l+3a)

41.019
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4.2 CYLINDERS IN COMPRESSION, BENDING

.

The compression on the cylinder has a resultant force, F, and resultant
moment, M, at the two ends of the cylinder. The internal axial load/in. .

Nx’ in the cylinder, is given by the equation,

F M

cos ¢
TTRZ

\
| The maximum value of Nx occurs for o= Q°

F_ . M
2-R" 2

N (max) =
x

4.2.1 Typical Design Situations

A very common application occurs in design of fuselages, interstages,
tankage, payload and living compartmefits of space vehicles that are

cylindrical in shape and are subjected to maneuver and thrust loading.,

The cylindrical configuration is especially attractive from the fabrication

point of view since the isogrid may be machined in the flat and then formed

into the cylindrical shape,

4.2.2 Method of Cptimization

The optimization assumes that minimum weight occurs for simultaneous

failure modes in general instability, skin buckling, and rib crippling.

> 4.2,001




General Instability

In Reference 2-1, it is shown that theoretical values for general instability

due to bending may be written in the form,

R (4.2.1)

This theoretical formula is independent of the length of the cylinder.

In the case of uniform compression, the theoretical critical load is highly
length dependent and is described by a looped ''festoon curve, ' Figure 4.2-1.
This curve is dependent 2n both R/t* and L/R and has been plotted from
Reference 2-1 for an R/t* ratio of 85.5, a typical value for isogrid. The

length dependence was first noted by R. V. Southwell in 1914 and later by
W. Fligge in 1932.

If, however, internal pressure is present or if the loading consists of

combined bending and axial compression where the bending component is at

lea;lt 25 percent of the value given by eq. (4.2.1) and the L/R ratio is equal

to or less than 10, then the combined loads are on the linear portion of the
interaction curve, then the axial component may also be expressed by

eq. (4.2.1) (see Figure 4,2-2).

M
F 4-;—‘
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Figure 4.2-2. Interaction Curve Showing the Effect of Length
The axial load/inch, Na’ is given by,
_ F
N, 7R (4.2.2)
The bending load/inch, Nb' is given by,
(4. 2.3)

Assuming the v2lidity condition for uniform compression to be met so that

Na may be given by eq. (4.2.1), the combined loading condition is,

1 E"‘t* (4' 2' 4)

Na+Nb=Ncr(])= > R
J3(l-v)

4.2.004
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The theoretical values of eq. (4. 2.4) must be multiplied by a ""correlation"
or "knockdown' factor, Y, (Y <1.00) to convert theoretical values to

allowable compressive loads/inch. This factor accounts for deviation of

geometry, material properties and boundary conditions of test specimen from
the ideal condition assumed in the theory. These deviations always reduce

the test values below theoretical predictions.

Using the values of E* and t* from eq. (2.5.3) and (2. 5. 4),

R P (4.2.5)

where Y is an appropriate correlaiion factor. For very lightly stiffened
cylinders, one may use a Y from Reterence 2-6 as a function of t*/R, For

moderate or heavy stiffening a value of

Y=0.65

is recommended by Reference 2-11. This is the value assumed in the

optimization. Thus,

N, (=cgER B (4.2.6)

where

g © 0.612 {¥) = 0.397
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Skin Buckling

The critical stress for skin buclk’ing is given in the form, Reference 2-9,

g

k 2 (t 2
cr

- = --\ (4.2.7)
12 (1-v5) V&
Using the formulae for isogrid the critical skin buckling load/inch may be

written as,

2
N t
N_(2)= ¢ Et(l+0)>5 (4. 2.8)

h

An appropriate value for ) established by test on optimum structure,

Reference 2-12,

Rib Crippling

Sinc e the maximum stresses will occur for principal stress conditions,

N =0, and eq. (2.4.12) become,
xy

- :_3__.}'_ (4.2.9)
2,3 Leff

These equations show that if x is chosen as the axial direction, i.e., the

1 ribs are oriented axially, then since

Na+Nb=Nx

and if internal pressure is present, then

=5
Ny )
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thus

=1
e,

. N m) (4. 2.10)

In this case, the internal pressure is contributing an additive load to the

1 rib. It is apparent, that in this case, it would be better to orient the

1 rib in the hoop direction. Then,

-1 r 1
0‘1 =t—-[%-+§-(N LNb):I
eff b -
| a23=3f (N, + N, (4.2.11)
’ eff 2

This is a much better arrangement since the 1 rib is now in tension and the

2,3 ribs are less highly stressed.

In the optimization, it will be assumed that the rib stresses are given by the

relation,
N + N
o, =_at__h (4.2.12)
eff
thus
bZ

Ncr(3):c2Et(1+a)d—2— (4.2.13)
where

Ncr (3) = Ncr (1)
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From Reference 2-12, an appropriate value for ¢, is

c, = 0.616

This coefficient is very close to the value for simple support boundary condi-

tions at the attached edges of the plate.
In going from unflanged isogrid ribs to flanged isogrid ribs, the ''free” edge
would become supported by the flange and the value for ¢, may be expected

to improve by a factor of 10.

Collecting formula, one has the system of equations,

2
- t-
Ncr(l) = ¢y E R B (4. 2. 14)
tZ
N (2)=c, Et(1 to0)— (4. 2.15)
cr 1 h2
bZ
= { -_— '
Ncr(3) <, Et ‘1 + o) dz (4. 2.16)
where

Ncr(l) = Ncr(Z) = Ncr(3) = Na + Nb = Ncr

Eq. (4.2.14)to (4.2.16) are formally identical to the equations for buckling
of the spherical cap and the optimization procedure proceeds in exactly the

same way.

To eq. (4.2.14)to(4.2.16) append the "burst” condition where the burst

pressure may be regarded as a 'free parameter. "

- R -
Ftu_t(1+a) (4.2.17)

4.2.008




Define the non-dimensional loading parameter, N,

N Ncr (Ftu
N = TR —p—-) (4. 2.18)
From eq. (4.2.15), (4.2.17) and (4. 2. 18),

ﬁ=cl(§)2 (4.2.19)

From eq. (4.2.16), (4.2.17) and (4. 2. 18),

N=ec, (2) (4.2.20)

2.2 2 4 2
=2 b“t bd t o
N=c.c = ¢,cC -—) = =¢.,C, —
12h2d2 12<th (d) 172 44
and since o and § are positive,
N = = 4.2.21
TV G2 2 (4.2.21)

Eq. (4. 2. 20) satisfies the condition of simultaneous rib crippling, skin
buckling and burst.

From eq. (4.2.14), (4.2.17) and (4. 2.18),

t
OR1+a S0 F N

4.2,009



or

F
N (ﬂ)= ¢ ——-9-—-2- (4. 2. 22)
(1+a)

Eq. (4. 2.22) satisfies the condition of simultaneous general instability and

burst,

Define the non-dimensional loading,

x = o=t (10%) (4.2.23)
V°1 "2
I—\I-.Ftu

Yoo e (4.2, 24)

then eq. (4.2.21) and (4. 2.22) become,

[+4

x = —— (103) (4. 2. 25)
6

y =B , (4. 2. 26)
(1+e)

The right hand side of eq. (4. 2.25) and (4. 2.26) are identical to equations

of the spherical cap and the same X,Y¥: a, 6 mapping graphs may be used.
The equivalent weight thickness, t, is
t=t(1+3a)

Usging eq. (4. 2. 16) this becomes,

't—'_ER l+30
°F 1 +a
tu

4.2.010




or

F 1 +a (4.2.27)

As in the case of the sphere, the quantity t/R may be minimized as a
function of p/Ftu for a given value of Ncr/ER‘

t
R N
T == GIVEN

|
: MINIMUM WEIGHT CURVE
i

P
—0— N Tn —> ?!u
(] in
(m) Foa( _ﬁ_)
As before this will divide all design into two classes.
A, For
P burst < po
F F

tu tu

the minimum weight is given by P, and the construction is

"compression-critical. "' Use of P, will thus give lighter weight

designs and additional burst safety factors so that crack propagation

effects due to cyclic loading on flaws are less severe.

B. For
Phurst 5 P
F F
tu tu

the burst pressure must be used. These designs are

''pressure-critical. "

4.2.01
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Crew

N A bl g
TR TR R R A ST AT
e T T TR T e R AR T R

If a family of ( /R) and associated {p /E ) values are computed for
different (N_ /ER) a master non-—dxmenstonal curve may be constructed.

This is shovxn in Figure 4. 2-3.

The complete geometry is determined by the following procedure:
A. Compute x and y and from Figure 4.2-4 read off the corresponding
aand 6.
B. t may now be computed from the burst condition or from the mini-

mum weight pressure, P .

.___PR
t v Fa) (4. 2.28)
tu

where p is the larger value uf Phurst °F P,
C. Xnowing t, the triangle height, h, may be computed from (4. 2. 19)

€1
h= |—t (4.2.29)

N
D. The rib depth, d, is given from t and 6.

d = 6ot (4.2.30)

E. The rib width, b, is computed from eq. 4. 2,20),

As a check on the computed values, bd/th should agree with the value of @

read off the a, & graph.

4.2.3 Worked Examples

Worked Example 1

R = 48.0 in.
- 6) bsi
E =11,0 (107) psi Phurst 55 psi
F =390k F, =67.0 ksi.
tu

M - 8000 k in,

42,012
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F__ 300

a 27R 2m(48) - 0993 k/in,

N, = M7 = 80002 = 1,106 k/in.
7R m(48)% .

N _=2.099 k/in,
cr

Since N, > Ncr(l)/4. the assumption for validity of

sk kP
Na + Nb =N = 1 ERt
cr 3 (l-v?-)

is fulfilled.

N
ECP: = “20328)(10'6) - 39.7(1077)

From the graph,

t .
min}\ _ P
( n )- 0.00149 (FQ_>104 = 10.3

tu

p, = 1.03 (67.0) = 69.0 psi > 55 psi.

The design is compression-critical since Py > Pyurst and the minimum

weight is obtained by using Py- Also, the (Tmin/R) graph, based upon P,
is valid and,

t_ . = 0.00149(48) - 0.0715 in.
min
3 - Ner(Fry)
ER P,

3
3.97(10'6) -"-7'-6—%%’—1 - 3,85 (1077)

4.2018




3

. N(10°) 3.85 .
2.505 2.505 1. 53
- F -3 3
_ _K tu) _ 3.85(107°) [67.0(10 )]
Y 7 0.397 P 0.397 69. 0
| = 9,42
From the a, 6 graph,
a = 0,273, = 13.5
P R
_ o _ 69.0(48.0) . .-3 - .
TR TTFa) T B7.0(1.273) (10 ) 0.0388 in.
d = 6t = 13.5(0.7388) = 0.524 in.
= -4
/ N _ [38.5(1077) - = i
b= 3618 ¢ -\/ eig—— (0.524) = 0.0791 (0.524) = 0.0415 in.
_oflQe2, _ [10.2 442 N _ .
h = Rt =47 335 (107 (0.0388) = 51.5 (0.0388) = 2,00 in,
2 {)
ae—Z L0y,
v
As a check,

bd _ 0.0415 (0.524) _

th =~ 0.0>88 (2,00)

= 0.280

T =t(l+30)=0.038[1+3(0.28)]= 0.0714 in.

Worked Example 2

R

E

M

1

150 in.
10.5 (106) psi.

59,5 (10%) 1b in.

4.2.016
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Phurst ~ 60 psi.
F = 71,0 ksi.
tu
6 6
59, 5 (10
E N, - M. 2.5 ) . 59-7%_%8’ - 842 1b/in.
R 7 (150°)
N
cr _ ___ 842 -6, _ -7
- ER ~ 10.5 (150) (1077) = 5.35 (10 )
From the graph,
t . P
(-ETLB) = 0.000444, =] 10%=3.10
R }tu

" = = 22. i i=
p, =0.310(71.0) = 22.0 psi < 60 psi = Pyorst

In this case the cylinder is pressure-critical and Phurst must be used.

_ N F L. o 93
N =—SE (Tt )= 5.35 (107 ) L—l——l“'“é(;o ] - 6,33 (107%
\pburst

_ N (103) _0.633
X = 27505 ~ 2.505

< (F
N ( tu)~0.633 (71.0): | 80

=0.262

Y 0.397 \ p [ 0.397 \60.0
From graph, @ = 0.0118, b= 6.8

3

pR 00 (150) (1077y= 0, 1252 in.

T o) 71 (1.0119)

o
i

.Ftu (1

bt = 6.8 (0.1252) = C. 852 in,

o
it

4.2.017




N 6.33 (10-4) ,
= / = . - 0.0321 (0.0852) = 0.0273 in.
b 0.616 d \f—o_.%'l_é'_ (0.852) = 0.0321{ ) o

h = \I 10.2 =,/ % 10%) (0.1252)= 127 (0.1252)= 15.9 in,
N .

o2, 2059 .
a—\/? = 1732 = 18.38 in.
As a check,

bd _ 0.0273 (0. 852) _
th _ 0.1252 (15.9) 0.0117

For the cquivalent weight thickness,

"

t=t(l+30a)
= - 0.1252 1+ 3 (0.0117)]
T=0.1297 in. '

If the cylinder had been compres sive critical, one would have had,

it

a t 0.000444 (150)
min

ht

0.0666 in,

4.2.018




4,2.4 Summary of Design Equations for Cylinder Under Axial
Compression and Bending

Ref. page .
¢y = 0.397 4,2.005
¢, = 10.2 4.2.006
| , ¢, = 0.616 4,2.008
Ref. eq.
N F
T - e (_tu

N = ER ( p) (4.2.18)

| = 13

| _ N (10°)
3 X T 72508 (4.2.23)

- F
. N tu
Y 7 07397 (p ) (4.2.24)
P L. - (4. 2. 28)
Ftu (1 + a) .

d = &t (4. 2. 30)

_ N
b = T (4. 2. 20)
PR B (I (4. 2. 29)

N

| As a check,

. bd
« th
t = t(l43a)

42,019




4.3 CYLINDERS UNDER TORSIONAL SHEAR

The cylinder is loaded by a resultant torque, T, on the two opposite ends,

The internal shear load/in. , Ny 4, is given by the equation,

T
N = =V
x¢ ZnRz cr

where R is the cylinder radius.

4.3.1 Typical Design Situation

High torque may occur because of maneuver loads control fins or because
of spin torques applied for flight stability purposes. The analysis may also
be used to approximate the required dimensions around the neutral axis due
to transverse shear accompanying bending, References 2-13 and 2-14. Ref-

erence 2-1 shows that the shear buckles are located in neutral axis region,

4. 3.2 Method of Optimization

The optimization method assumes simultaneous general instability, skin
buckling, and rib crippling. An auxiliary burst pressure is introduced
which is varied to obtain minimum weight of the design. This defines an
optimum pressure whichdivides the design into two classes. In the firstclass
are all designs whose burst pressure (which may be zero) is less than the

optimum pressure. In the second class are all designs whose burst pressurc

4.3.001




exceeds the optimum pressure. In these cases, the higher pressure must

be used for the design.

General Stability

From Reference 2-6, the general instability torsional shear, V.., is given

by,
c . Esktk
Ver = 7R 5/?1 L\1/2 @3-
(%) ()
where
4

co = 0.747v"/

34 45 0. 67,

The recommended value for Yy

Thus

Co = 0. 50

Note that E* and t* may be used since eq. (4. 3. 1) is in terms of a stress

resultant, V__.
—_—— cr

Substituting
2
E+x = E g--———1 +ﬁa)
t =t 1 +o

into eq. (4.3.1),

4.3.002




:
£
=
E

coEt [35/4
T TR e

Skin Buckling

The skin buckling equation appears in the form,

k nlEt?
8

T =

T 12(1 - v2) n?

An unpublished investigation by B.R. Lyons indicates that
35.0 for clamp=d edges

~
it

\ 8

k

. 20. 1 for simply supported edges

It will be assumed, for the purpose of the section, that the edge fixity is such

that

kx = 25,0
8

then from eq. (2.4.11)

(2
w

(4. 3. 3)

™~

vcr (2) = t(l+¢r)gcr = clE(l + a)

=y

where

2
_25.0 (n )
¢, = —-—-——"’12 8/9) - 23.1
Rib Cripplij&
From eq. (2.4.12)
ZNX
= - =% .
2 3= F VT + o)
_ Y3
ny = 73 t(l +o) oy

4.3.003




From eq. (4.2.13) one then obtains,

b2
V (3)=c, Et(l +a)— (4.3.4)
cr 2
d
where
NG
€, = 3 (0.616)
= 0,533

A summary of the critical load is,

c. Et 5/4

0 _B
v (1) = (4.3.5)
cr (R)5/4 (k)sz* (1+a)lﬁ

t R
v 2) = Et 1+a)-1i {4.3.6
cr(")_cl ( h2 (4.3.6)
2

V (3)=c,Et (]l +a)2= (4.3.7)
cr 2 dZ tT

To these are nowadded the burst pressure, p, which is regarded as a free

parameter.

F = —PR___ (4.3.8)

_ v __[F,
V- —sr (_tu (4.3.9)
I-'J p N

Ve, (%) (4.3.10)

4.3.004




From eq. (4.3.7), (4.3.8),and (4.3.9),

V=°z(§) (4.3.11)

i h™d
T - o
vV = ¢y €5 62 (4.3.12)

From eq. (4.3.5) and (4.3.9)

_ coEt [35/4
Ver =V ER (1!2'>=( 574 172 74

tu
or

v R 9/4 L 1/2_ ,35/4
R h (1 +a)10/4

4.3.006




7 F
A /_L_ tu . _B
[co R ] P~ (1+ea) (4.3.13)

X = - :2 (103) (4. 3. 14)

4/5

— S F
\4 L tu g
v =] = (4. 3. 15)
[ o \/R ] P (1 +a)7

<
i

The x, y; @, 6 dependence is seen to be the same as previous graphs. The
equivalent weight thickness, t, is

T = t(+ 3a)

Using eq. (4. 3. 8) this becomes,

T _ P 1 +3a
£ (1+d’) (4. 3. 16)

As in previous cases, the quantity, t/R, may be minimized as a function of
p/Fy, for a given value of V.,./ER and L/R.

t
R ? Ver anp L
&R A

GIVEN

‘—mln\
()
MINIMUM WEIGHT CURVE

()~ (%) o

’/“/ 4.3.008




This will again divide all designs into two classes:

Phurst P

1., For — = —2
F

tu tu

These are the compression-critical cases.

Ppurst Ps
2. For >

tu tu

In this case the design is pressures-critical and the boost pressure

must be used.

A master curve may now be constructed of (?m.m/R) and associated

(po/Ftu) values for different Vcr/ER and L/R. This is shown in

Figures 4. 3-1 and 4. 3-2.

The complete geometry is determined by the following proc edure:
1. Compute x and y, and from the graph read off the corresponding a
and 6, Figure 4.3-3.

2. t may now be computed fromthe burst condition or from the

minimum weight pressure, p_, whichever is larger.

pR

Fig 1 +a (4.3.17)

4.3.007
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SUMMARY OF DESIGN EQUATIONS FOR CYLINDER UNDER TORSIONAL SHEAR

Co = 050
Ct = 231
Ca = 0533
T Er \ P
vV (103)
X = —
351
v L
v [V [t
Lo.so R
PR
‘ =
Flu1+a)
d = 8t
b = _l. d
0533

h = 23.1

_ t
v
AS A CHECK,

bd

@ T

T = t(1+3a)

] 4/5

J

REF PAGE

4.3.002
4.3.003

4.3.004

REF EQ
(4.3.9)

(4.3.14)

(4.3.15)

4.3.17)

(4.3.18)

(4.3.19)

(4.3.20)

Figure 4.3-1. X,Y, @, ¢ Curves for Cylinders Under Torsional Shear
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3. Knowing t, the rib depth, d, is obtained from 6.
d = 6t (4. 3.18)

4. The rib width, b, is computed from eq. (4. 3.11).

b o= /l d (4. 3. 19)
€2

5. The triangle height, h, is computed from eq. (4. 3. 10).

‘1
-t (4. 3. 20)
v

As a check on the computation and graph reading, now compare the computed

value of a from

bd
~ th

with the value read off from the graph

4.3,3 Worked Example
R = 48.0 in.

E = 11.0 (106 psi
T = 30 (109)1b in.
L = 198 in,

L/R = 4,0
Phurst 40. 0 psi
Ftu = 67.0 ksi

T _ 30 (10%)
°T  2rR%Z  2n (48

= 2075 lb/in,

4.3.011




\
, 2075 -
i ER ~ 11.0 (48.0) (10°% = 3.93 (10 )

¥

: From graph,

Po 2
= (107)= 1,67

Ftu i
?min. '

R = 0. 00247

P, = 167 (67.0)= 112 psi > 40

The design is compression-critical,

t_ . = 0.00247 (48)= 0. 1186 in.
min
= _ Vcr Ftu _ 3,93 (10-6) _ -3
v = ER )= - = 2.35 (107°)
1.67 (10 )
4/5 4/5
N A oy P\ | 2,35 (2) (1073 103
y ~170.50 R p /° 0. 50 1.67
= 14, 38
v 2 LU0z -
S T 3.5]1 T 3,51 0
From a, § graph,
a = 0,285,
6 = 20.7
4.3.012




¢ - __PR . L67 (1073 (48 0)

= = 0. 0625 in,
F. (1+a) 1. 285 2. 0625 in,
d = 8t = 20.7 (0.0625)= 1.299 in,
v 23.5 (10‘7)‘
b= o3 d = \/ 0.533 (1. 290)
b = 0.0858 in,
23, | 23.1 (10°)
ho= \[5= ¢ = \[2L U004 60
= 2,385
v
h = 6,19 in,

As a check on the dimension,

_ bd _ 0.0858 (1.290) _
N N [ ARTS 19) = 0.287

t t(1+3e) = 0.0625 (1.862) = 0.1163 in,

As an additional check on all strength calculations, from the B curve, Figure 2-1,

a = 0,287
6 = 20,7
= 24,0

From eq. (4. 3. 5), (4. 3. 6),and (4. 3, 7),

o Et p5/4

V) 2 R v ) L 1/4
(B &) e

0.50 (11.0) (10% 0. 0625 (24, 0)°/4
5734 172 173
48, 0 192 (1. 287)
(575532 (48.0)

= 2030 1b/in,

43013

s L L i i e amerim s
ol . R I T T N S TN I AN P R T T RN




2

-

£y
V() = c Et(l +a)(h)

6 0. 0625 \?
= 23.1 (11.0) (107) (0.0625) (1.287) | <=5~
= 2080 Ib/in.

b 2
Ve, (3 = ¢, Et (1 +a)(-d—)

0, 0858
1. 29

2
0.533 (11.0) (10°) (0. 0625) ( ) = 2080 Ib/in.

4. 3.4 Summary of Design Equations for Cylinder Under Torsional Shear

Rei. page
o = 0.50 4,3,002
cl = 23.1 4.3.003
(:2 = 0,533 4,3,004
Ref. eq.
= V<:r Ftu
Vv = ER "—p'—' (4. 3. 9)
- 3
x = UL (4. 3. 14)
4/5
- F
Vv L
y = [ 0,50 \/_ﬁ- ] <__7t)_u__> (4. 3.15)
¢ PR (4. 3.17)
Ft‘u (1 +a)

4.3.014



d = &t (4. 3.18)
v
b = d 4,3,1
\/0.533 ( %)
23,
h = \/—-:-1- t (4. 3. 20)
v
As a check,
- bd
¢ =t
t = t(1+3a

4.3.018




4,4 CYLINDER UNDER UNIFORM EXTERNAL PRESSURE

R ENEEERER R,

R

4

SREX
FFFes

FFFFFfF FFfArt

The loading of the cylinder consists of a condition of uriform external pres-

gure over the side walls and ends of the cylinder.

i Ny is the internal axial load/in. and Ny is the internal hoop load/in. in the

cylinder, then,
_ pR

N, = %_
N¢ = pR.

where p is the uniform external pressure and R is the radius of the

cylinder.

4.4.1 Typical Design Situations

The most common design situations for this conditicn of loading occur for
submersibles or vacuum tanks, In some cases, small additional axial loads
or more commorly small bending loads are superimposed upon the external
pressure loading. In these cases, the subsequent analysis may be used for
a ''first cut' at the design, Usually only small modifications are necessary

to accommodate the additional loading.

4. 4,2 Method of Optimization

The method of optimization assumes simultaneous failure for rib-crippling,

4.4.001



skin buckling, and general instability. A burst pressure parameter is intro-
duced and is varied to obtain minimum weight of the cylinder. This deter-
mines an allowable burst pressure for minimum tank weight and divides all
designs into two classes. In the first class are all designs whose actual
burst pressure (which may be zero) is less than the minimum weight pres-
sure. In the second class are all designs whose burst pressure exceeds the
pressure for minimurm weight. In these cases the actual burst pressure

must be used.

General Instability

Two cases are considered, These are,
1. The '"long" cylinder

2. The "intermediate length' cylinder.

According to Reference 2-6, the intermediate length cylinder lies in the

range,

and since

\[1-v2 - ,/—98- = 0.943

peo= t B, 10% s 0.530(%{‘-)2(%) P_ <4(10%)

(4. 4. 1)

For the long cylinder, the general instability pressure, p__, is given by

cr
Reference 2-6.

4.4.002




where

\ _ 0.90

C = = 0,253
g A
Thus,
ok 3
N (1a) = p, R = cgE*R(%)
3 E2
Ny (12) = ¢ ER(-R-:) 1+a

For the intermediate length cylinder, Reference 2-6

I
Per °© RS/Z ‘L
() ()
where
| - 085 VY o0.855 ©.75) . o, 702
2,.3/4 8
(1 -v") 9
Thus,
co E*R
Ncr(lb) = Pep™ T R 5/2 L
() (F)
c. ER 3/2
0 B
N (1b) =
cr 5/2 1/2
Ly (1 +a)
() ()
4.4.003




Skin Buckling

Tests by Jenkins, Reference 2-13 have shown that the biaxial interaction

curve for skin buckling is linear in the range of interest,

EXTERNAL PRESSURE LOADING

)/

No

SKIN BUCKLING INTERACTION CURVE

From the interaction diagram,

Ng (External Pressure) = 2? N¢ (Uniaxial)

Thus taking 2/3 of the allowable from Reference 2-12.

3
- Lo
N_ (2 = ¢, E(l+0) 7 (4. 4. 3)

where

s 2) =
c, =5 (10.2) = 6. 80

Rib Crippling
Eq. (2.4.12) shows that one may conservatively set N¢p (2) = Nx for the

| ribs in either circumferential or longitudinal direction. In this case, onc

has the same rib crippling allowable as for uniaxial loading.

4.4.004



N, () = ¢, E+a) (L) ¢

where
¢, = 0.616

Burst

The burst pressure is given by the equation, Fy,

Collecting formula,

3 2
- - ty B
Ncr (la) = pch - COER(R) 1 + a
o ER [33/2
Ncr (Ib) = pch = R 5/2 Ly (1 +O)l/jf
(&) (§)
t3
NCI‘ (2) = clE(l-ra);?
2
= bt
Ncr (3) = czE(l+a) dz
pR
F tu Tt(1 ta)
Define the auxiliary variable, N.
N = Pcr Ftu)
E P
4.4.008

pR/t (1 + a)

(4. 4. 4)
(4. 4. 5a)
(4. 4. 5)
(4. 4. 6)
(4. 4.7
(4. 4. 8)
(4, 4.9




From (4. 4.6), {4.4.8),and (4. 4. 7,

N = ¢ 32 (4. 4.10)

N = ¢, 3 (4. 4.11)

2.2 2 4 2
-2 b4c bd\“ [t a”
N™ = ¢ ¢y 7537 % €% (&) (g) = <1 4
hd 5
-— [+ 4
N = clc2 52 (4. 4. 12)

The positive root is taken since N, a, and & are all positive.
Equation (4. 4. 12) satisfies skin buckling, rib crippling and burst conditions.

From eq. (4.4.5a), (4. 4. 8),and (4.4.9),

P _ 3 2
cr _ . P 1 g
E O\ F | + o 1l +ta

F.\° 2
- (_g_)(_l. tu) 8
Foo/\5 P (1 +a)?

4.4.008



meortt

i R SRTFTW E
. 4,,:N\QW"“' ,"{"4}7 ‘:?“ ’)

f{’ﬁ' 78 *lﬂ.ﬁu -

(1 +a)2

(4. 4. 13a)

Eq. (4. 4. 13a) satisfies burst and general instability for a long cylinder.

From eq. (4. 4.5b), (4. 4. 8),and (4. 4.9),

F

_ p COER. ‘33/2

N, = =

® NER ( tu) R 5]2 L. [(1+a)l[2
(t ) (_)

B \
(g) (l+a)l;"
t
But
F
R . “tu

T - P (l+¢l),

Thus
3/2

= [F 3/2

_N_(_g) 1). 2%

) P R (1 +a)

or

(4. 4. 13b)



e F VIR o

o

Eq. (4.4. 13b) satisfies burst and general instability for buckling of an
intermediate length cylinder

Equations (4.4.12), (4.4.13a), and (4. 4. 13b) satisfy all instability and burst

conditions, moreover, they are seen to be similar to eq. (4.2.25) and
(4. 2. 26) for buckling of the cylinder.

As a consequence, the same x, vy; a,
6 curves may be used. Thus define the quantities,

__R o) | — (103) (4. 4. 14)
\/:; <y b
and
] 1/2 -
or
2/3 .
yy = [E%"RI:} ;“ - - +i)7 (4. 4. 15b)

to be used with the x, y; a, § curves,

The equivalent weight thickness, t, is

T = t(l+3a)

4.4.000




Using eq. (4. 4. 9) this becomes,

T - PR /1+3a)
—Ftu \ 1+a

or

LR I‘P— (lrt;%) (4. 4. 16)

tu

As in the previous cases, the quantity t/R may be minimized as a function
of p/Fy, for a given value of pcy/E and L/R.

LA
B
_-’

MINIMUM WEIGHT CURVE

If a family of (Tmin/R) and associated (po/Ftu) values are computed for
different pcyr/E and L/R, a master nondimensional curve may be con-
structed, This is shown on pp. 4.4.019 and 4. 4, 020,

The complete geometry is determined by the following procedure:

1. Compute x and y and from the graph read off the corresponding a
and § , Figure 4, 4-1,

4.4.009
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Lo 40 50 60 70 80 90 100 SUMMARY OF DESIGN EQUATIONS FOR CYLINDER
F 5 533 13533 SSESE S5 ™ 30 UNDER UNIFORM EXTERNAL PRESSURE
; % REF PAGE
} Soam=as: S s e S e sass L\2/R 8 —_—
i 5 }1‘134 St SeoTe sazi® A =0.530 (;) (:—)ua
824 soent sevs T 2¢
m o 0 T INTERMEDIATE CYL LONG CYL
< 1 T ———
102<A < 41103 A>4Xx 103
15 -
Co = 0.702 0.253 4.4.003
cy = 6.80 6.80 4,4.004
]
{ 1 c2 = 0616 0.616 4.4,005
10
REF EQ
9 am——
25smzs o [F
as=spows 8 5 - —= ._'!’_)
' T E P/ (4.4.9)
7
N (103) 4.4.14)
bt 6 X =
: 204
5 N w2 [Fu
Ya = |3263 e {LONG CYL) {4.4.15a)
- 2/3
on 4 N L Fy
= Tt i Y = — — Y 441
. as b [ 5702 (nﬂ (‘F‘) (INTERMED CYL) (4.4.15b)
T a . :
i 1
! 3 N . —fBR__ 4.4.7)
i SESSE: Fry 14 @)
52T £ 25 ¢ = Bt (4.4.18) ;
1 : T 4
F £ 3 — :
HTH Sisaiii b = / _N_ ]
~ave - F 2 0616 d {4.4.20) !
L R k.
s -~ 030 -
015 o }j0.40
10 =
i " __st 1 (4.4.19)
15 N
AS A CHECK., \
bd
@ th
h-’- _
A 1 t = t{1+3a)
30 40 50 60 70 80 90 100
P4
bl
. r
Figure 4.4-1. X, Y, a,é Curves for Cylinders Under Uniform External Pressure A
-
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t may now be cecmputed from the minimum weight pressure, Pg.

or the burst pressure, whichever is larger,

pR

S s (4.4.17)

Knowing t, and &, the rib depth, d, is computed from,
d = 6t (4. 4. 18)

The triangle height is computed from eq, (4. 4.11)

1
h= [|— t (4.4.19)
N

The rib width is computed from eq. (4.4.12).

b = /-I-"- d (4. 4. 20)
€2

As a check on the computed values of b, d, t, h and the accuracy of the

reading of the graph, the quantity (bd/th) should equal the value of a ‘ead

off from the x, y; «, & graph, Figure 4. 4-1.

4,4.3 Worked Examples

Case of Long Cylinder

Per = 600 psi Long cylinder.
pb,urst =0

R = 10.5 in.

E = 18. 0 (10%) psi

4.4.011
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Per 6 600
> (107) = 18.0 - 33.3

From long cylinder graph, Figures 4.4-2 and 4.4-3

t -
" = 0,016
P
=2 (10%) = 10.7
tu
T = 0.016 (10.5) = 0.168 in.
— P F -3 -
5 B} 'Sr(tu)_333(19 )~ 311 (1073
' P 10,
_ 42 F 31¥2, 3
) N ( tu) [3. 11 (10°) (10
Ya 0. 253 P 1 70.253 \10. 7
= 10. 37
3,11
x = —-—2.04 = 1,523
From graph,
a = 0, 320
5 = 14.5
R -3
¢ =3 P _ 10.7(10322)(10. 5) . 0.0852 in.
tu (1 +a) ’
d = 6t = 14.5(0.0852) = 1,235 in,

4.4.012
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R

) N _ 311107 _ .
L b = Vom, 616 d = J W (1. 235) = 0,0877 in.

3
h o [6e-80 4 . /6- 80010 ) (0.0852) = 3.99 in.

As a check,

bd 0.0877 (1. 235)

@ =t - 0.0852(3.99) C.318
K3 - t(1+3a) = 0,0852(1.953) = 0.1665 in. ]
p R = 600 (10.5) = 6300 1b/in.

From the a, &, P graph, Figure 2-1,

«a = 0,318, & = 14,5, p = 18

Using eq. (4.4.5a), (4.4.6) and (4.4.7)

3 2
: - £\ B
N__ (1) = 0.253 ER (R) L
) 6 0.0852\° (18)%
= 0,253 (18.0)(10%)(10. 5)( o ) L& :
= 6250 1b/in.
N__ (2) = 6.80E(1+a)
h
6 (0. 0852)°
= 6.89(18.0)(107)(1. 318) ———>~ = 6250 1b/in. :
\‘ (3. 99) i
i
44,01 §




2

N (3) - 0.6i6E(l+alts
cr 2
d
- 0.616 (18.0) (i0%) (1.318)(0 08"2)(M)2
= . o 1 . < B 2 1'235
= 6260 lb/in,
Worked Example 2
Per = 100 psi Fm = 67,0 ksi
Phurst = 0 L = 192 in,
R = 48,0
. 6 .
E = 10,7 (107) psi
.2 L
L/R = 35 - +0
P 6 100
cr
o ——ad 2 ——— = 9
i) (107) 107 3, 35
|
| Fro.ao graph,
P
FL(10%) = 4.55
tu
t—min
R = 0,0065
The optimum burst pressure, p_ is,
P, 4.55 (67.0) = 305 psi,
The minimum equivalent weight thickness, Tmin' ,
t . = 0,0065 (48) = 0.312 in,
min

4.4.01¢




= P F -6
5 i} é:r ( tu>= 9, 35 (10_3) - 2.05 (1073
P 4,55 (10°°)
. N uod _ 205 Lol
- T2.08 T 204 - L
2/3
| K (L Fr
b - [o. 702 (R)] ( )
2/3

From x, y; a, & graph, Figure 4.4-1

a = 0,27
6 = 16.6
. - __PR . 455 (1070) 48.0 | o 17 4n
T F (T+a) 1.27 Tt et
u
d = 8t = 16.6 (0.172) = 2.85 in.

— )
_ N _ 2,05 (107™7) _
b = ST d = \/ 0. G158 (2.85)= 0.1645

3
6. 80 - [6.80 (107) =
Vi \/—n's— (0.172) = 9.91 in.

h =
As a check,
@ = bd _0,1645 (2.85 = 0.275

th ~ 0.172 (9.91

4.4.017
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1}

N
cr

pch = 100 (48) = 4800 lb/in,

From the p graph, Figure 2-1
a= 0,275, &= 1,6.6, p = 18.8

Using eq. (4.4.5b), (4.4.6) and (4. 4. 7),

t (1 +3a) = 0.172 (1.81) = 0.311 in,

N () . Q702 ER p3/2
cr - 5/2 1/2
B_) L|(+e
B §
] 0.702 (10.7) (10°) (48.0) (18.8)3/% - 4980 Ib/in.
EX )5/21_93_ (1.275)' /2
0. 172 18
3
N (2) = 6.80E (1 + a)=
cr hZ
6 (0.172)3
- 6.80 (10.7) (10%) 1,275 & - 4800 Ib/in.
(9.91)
X
N (3) = 0.616E (1 +a)t =
cr dZ
6 (0. 1645)°

= 0,616 (10,.7)Y(107) (1.275) (0.172)

(2.85)2

= 4820 lb/ln.

ey o

4.4.01%
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4.4. 4 SummarF of Design Equations for Cylinder Under Uniform
ternal rressure

2
- L R _B_
A = 0.530 (R) (t 1 +o
Intermediate Cyl Long Cyl
102 < A <4 (107 A >4 (100
€y = 0. 702 0.253
Intermediate Cyl Long Cyl
¢, = 6. 80 6. 80
€y = 0.616 0.616
P
- - cr _tu
. . X 10°
- 2. 04
1/2
T F
N tu
Y, * [6-._—253] < p> (Long Cyl)
2/3
N L ng
v, = | 57702 -y o (Intermed. Cyl)
- pR
t - Ftu 1 +a)
d = &t
.
b= \[;.616 d

4.4.019

Ref. page

4.4.002

4,4.002

4,4.003

Ref. page

4.4, 004
4.4.005

Ref. q.

(4.4.9)

(4. 4. 14)

(4. 4. 15a)

(4. 4. 15b)

(4. 4. 17)

(4. 4. 18)

(4. 4. 20)



n o= (280 (4. 4.19)

N
As a check,
. bd
th
T = t(1+309)

N S

4.4.020
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4.5 IN-PLANE CONCENTRATED LOAD IN INFINITE SHEET

As noted in Subsection 2.4, if changes of curvature are negligible, the
stresses in isogrid may be easily determined if Nx’ ny,and N are known.
For the case of the in-plane concentrated load for an isotropic sheet in

plane stress, the solution, due to Mitchell, is immediately obtainable from

Reference 2-2.

v A
Q
i\
0(1___V »x

Let the point O, at which the stresses are to be computed, be a distance r
from the origin and make an angle 8 with the x axis. The concentrated load,
P, is applied at the origin, 0, and is directed along the positive x axis.

The stress resultants are given by the expressions,

. Pocoso [ s 2
Nx el _- (3 +v)+ 2 (1 +v) sin 9] (4.5.1)
N = -+ cos@ l-v-2(1+v)sin26] (4.5.2)
Yy 4w r i
_ P ¢in® 2 -
ny R vl [1-v+2(1+v)cos e] (4.5.3)

Although Nx’ Ny’ and ny become infinite at r = 0, this is no problem

since stresses will not be computed closer than the reinforcing around the
hole in the node. At this point, all stresses are finite. The solution will Le
used to size ribs and skin around the attachment. Strictly speaking,

eq. (4.5.1) to (4.5.3) were developed using an Airy stress function in polar
coordinates for constant sheet thickness; however, if the thickness variation
is rotationally sy:nmetric and not too drastic, it may he expected to give

results sufficiently accurate for the majority of design problems.

4.5.001
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4.5.1 Tyvical Design Situations

Main structural loads carried by the shell of the vehicle arise from thrust,
airload, inertia,and gravity effects. The inertia and gravity loads resulting
from mass properties of the component parts may be directly transmitted to
the shell wall or through intermediate floors or bulkheads. For most cases
it is desirable to avoid bending stresses to minimize weight. In general,
this may be done if the loads are transmitted tangentially into the wall of

the isogrid plate or shell.

Typical design situaticns will arise from equipment in interstages between
tanks, tank baffles, pipe supports, etc. In one case (Figure 4.5-1), a side
load on a tank was transmitted tangentially into the tank by means of an

internal A-shaped frame in a structural test, Reference 2-12.

CR169
REINFORCED

= e

F ——P j ¢— F

P/2 PI2 D A
SECTION A~ A" <_l
an

Figure 4.5-1. Concentrated Load

44—

The reinforced region in the first pocket and first set of ribs away from the
loaded node was designed according to the analysis developed in this scction.
No extra reinforcing was indicatcd beyond this point. However, from the
point of view of fabrication, in pzrticular for bending from a flat sheet to
circular curvature, the '"beef up'' was feathered out for another 5 pockets to
prevent a flat spot in forming. This extra material served a double purpose

to distribute the local load as well as to provide local reinforcement.
A more exact shell analysis using Fourier series was able to account for the

changes of curvature of the shell wall. This analysis is sensitive to the size

of the loaded region. Strain gage readings showed that the reinforcing served

4.8.002
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as a "hard pad' tc distribute the load over the entire reinforced area. The

total pad weight involved was very small.

The cylindrical wall of the 8-foot-diameter tank was designed for an axial
loading of 2, 500 1lb in. without any side loading. The reinforcing at each pad
amounted to only 6 1b with a pad diameter of 24 in. The failure load was
40,000 lo side loading, i.e., 20,000 1b at each pad and an axial loading of
2,400 1b/in., only 100 1b/in. less that the design load for no side loading.
Moreover, failure did not penetrate the reinforced region.

4.5.2 Method of Analysis
Since v = 1/3 for isogrid, eq. (4.5.1) to (4.5. 3) become,

_ P cos#® .2
N & or (-5 +4 sin” 8) (4.5.4)
. _ P cos® . 2
I\y Sy vl (1 - 4 sin” 8) (4.5.5)
_ P sin @ 2
ny = (1 +4 cos™ 8) (4.5.6)

Skin Stresses

These are immediately obtainable from eq. (2.4.11)

Ty {-5+4sin26} _
_ P _cos b

{ay’ = %r Tt | 1-4sin’e (4.5.7)
_ P sin § 2

Txy T T 6r rt (1 + a) (1 + 4 cos™ 8) (4.5.8)

Stresses will be a maximum along the load direction where 6 = 0.

- - . _5p 1
xy max  °x (¢ =9) = © 6w

4.5.003




CET RN U T

‘['ﬁl‘l

LR

. w»g!:..i-.!,\.flr_-‘_ L ' LI U

v

’ R N AR R G T

Behind the load, where ¢ = 180 degrees,

- oy = spo_ 1
ax(8—180) =t bn rt (1 +a)

Rib Stresses (P in x direction)

ey 1, X

3
Rib stresses are obtainable from eq. (2.4.12)
3
8 Pcos 6

4 = e

1 9gm rt (1 + a)

Ir rt (1 + a)

023={ P ‘[cose-4sin29cosei\/§

(sin® + 4 sin 6 cosze)}

Rib Stress (P in y direction)

3
RIB STRESS (P IN y DIRECTION)

4.5.004

(4.5.9)

(4.5.10)

(4.5.11)



In this case exchange of x and y is eq. (4.5.4) to (4. 5. 6) gives

_ PcosH . 2

Nx T r (1 -~ 4 sin” 6) (.4. 5.12)
_ P cos® . 2

Ny = r (-5 + 4 sin 6) (4.5.13)
_ P sin® 2

ny = - -—617 = (1 + 4 cos~ ©) (4.5.14)

Note that 6 is now measured from the y axis toward the x axis.

Eq. (2.4.12) now gives

- 4 _Pcose .2 |
) * 3 wrtlray (1 -2sin7e) (4.5.14)
P L2
= -5 0 + /3
72,3 T 9nrt (1 +a) { cos® + 4 sin” 6 cose ¥ V3

(sin® + 4 sin® cos2 6)}

(4.5.15)
Recommend Design Procedure
The maximum vib stresses will occar for the 1 ribs for loads in the
x direction.
__8 P

"I max " 97 Tt (1 ro) (4.5.16)

From eq. (4.5.9) the maximum skin stresses are,
__5 P
%,y max ~ 67 rt(l ta) (4.5.17)

As previously explained, the reinforcing of ribs and skin will be i1 such a

manner that the reinforcing is rotationally symmetric with respect to the

4.5.008




loaded point. It is further recommended that the nominal value of a,

say @, in the unreinforced region be maintained in the reinforced region,

Since
2= = 0.283
and
where A = bgd = rib area,

then a conservative sizing of skin and ribs will be given by the equations,

- P
treq = 0.283 Ftu r (17T ao) (4.5.18)
Areq = a ht (4.5.19)
or
_ P
Areq = 0.283 a'oh Ftu T (1 +u°) (4.5.20)

Eq. (4.5.18) and (4. 5. 20) will satisfy dimensional requirements for loads
in either x or y directions, Since treq and Areq are inversely proportional

to r, the reinforced regions and additional weights are very small. If the

loads are applied as in Figure 4.5-.1, where some curvature changes may

4.5.008




be expected, the increase in dimension may be '"feathered out' over a larger
region than that required by (4.5.18) and (4. 5. 20) to "spread' the load and
reduce the curvature changes. If this is done the additional weight will still

be small.

It may be necessary to check for local skin buckling or rib crippling

using the equations:

2
¢ (skin allowable) = 10.2 Et—z- (4.5.21)
h

2
o (rib allowable) = 0.616 E—b—z— (4.5 22)
d

4.5.3 Worked Example

\NAVAVAVAVA
JAVAVA,
/ N/ \
VAVAAVAVANNN

P = 30k

a = 0,31

o

h = 4.1 in.
F = 61.0 ksi

tu
ah = 0.31 (4,1) = 1,27 - &

o t

0.283 P _0.283 (30) 0.116 in. 2’

Ftu(l+ao) 61.0 (1.31)

4.6.007




Rib r A Skin r t
h h

a 3 = 1.365 0.0988 a 3 - 1. 365 0.0778

b 4.1 0.0329 c %h = 5,47 0.0194
4

c gh = 5,47 0. 0247

On the actual design it will be necessary to check the final dimensions for

skin buckling and rib crippling according to °q. (4.5.21) and (4.5. 22).

4.8.008




4.6 IN-PLANE CONCENTRATED LOAD AT EDGE OF SHEET

4,6.1 Typical Design Situations

Typical design situations where this type of loading occurs are interstage
attachments and local edge load due to engine thrust. Many connections

are predominantly loadings of this type.

4,6,2 Method of Optimization

For the case of the concentrated in-plane load at the edge of an isogrid
sheet in generalized plane stress, the solution, due to Flamant, is obtainable

from Reference 2-2. It should be noted that eccentricity of load is not
included.

X Q

v

Let the point O at which the stresses are to be computed, be a distance r from
the origin, 0, and make an angle & with the x axis, The concentrated lcad,

P, is applied at the origin, 0, and is directed along the positive x axis.

From Reference 2-2, the stress - resultants are,

N = 2P cosb cosze (4.6, 1)
x nr

N - 2Pcos® .29 (4. 6. 2)
y mr

N = 4P conl 8in 0 cos® 4.6, M

xy nr

4.8.001
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Although Ny, Ny and ny become infinite at * = 0, the stresses will not be
evaluated closer than the reinforcing around the hole at the node. At this
point all stresses are finite. The solution will be used to size ribs and
skin around the attachment. Although the solution assumed constant thick-
ness, it is probably a very good approximation for reinforced sheet pro-
vided that the reinforcing does not depend upon the angle 8, i.e., at each

nalf circle, r = r,, the reinforcing is constant around the half-circle.

Skin Stress

The skin stress is immediately obtainable from eq. (2.4.11).

(
2

'qx ) cos 6 W

o ‘ - _ZPCOSG < sin29 L (4. 6. 4)

y mrt(l +a) c
sin 6 cos 6
Txy \ /
/

Rib Stress (1-Bars in x direction) _
The rib stresses will depend upon whether the 1 bars are in the x direction

or in the y direction.

[}
¢ a
X
3 1 2
LIDADING BAR ORIENTATION
From eq. (2.4.12),
o, = 2P cos © (4c0929-1) (4.6.5)

1 Inrt(l +a)

4.0.002
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_ 4P sin® cosH .
2,3 T 3urt (1 va) (sin® % \I3 cos 6) (4.6.6)

Rib Stress (1 = Bars in y direction)

In this case the subscripts x andy in eq. (2.4.12) must be interchanged.

),

’ 1
3
2
x Y
BAR ORIENTATION
L OADING
¢ = —2FPcos® .26 1) (4.6.7)

1 3nrt (1 +a)

. 4P sin@ cosb \
92,3 ° 3nrt (1 te) (cos 6 % \/3 sin®) (4.6.8)

Recommended Reinforcement

The maximum value of the stresses computed from eq. (4.6.4)to (4. 6. 8) will

not exceed the value, ¢, from the eq.
_ 2P
T onrt(l +a) (4.6.8)
It is recommended that @ be held constant at the nominal value, a,
Then, 1
{
P
t = 0.637 (4.6,9)
req Ftur(llrao)

4,6.003




1

R 1L Sy TN

and

A = bd = rib area.

A = 0.637 a_h
req o

P
F, r(l+a)

(o]

(4.6.10)

If P is a compression load it will be necessary to check the ribs and skin for

rib crippling and skin buckling using the equations,

L (skin allowable)

crib (allowable) =

b

0.616 E—~

dZ

(4.6.11)

(4. 6.12)

where L is computed from eq. (4.6.4) and T b is computed from the

maximum value o, from eq. (4.6.5) and (4.6.6) or (4.6.7) and (4.6.8)

dependent upon the rib orientation.

load direction, x.

4.6.3 Worked Example

F = 67.0 ksi
tu
h = 3.5 in.
a = 0,30
o

1 Bars parallel to adge.

4.6.004

Maximum rib stresses will lie in the



From eq. (4.6.9) and (4.6. 10)

0.30 (3.5) =

P = 400 k

1.05 in.

AR L SO0 g o, 2
No. Pockets r t A = 1,05t
1 3.5 0.0837 0.0880
2 7.0 0.0420 0. 0440
3 10.5 0.02€0 0.0293

4.6.008




T T TeR T SR e R e e e T s R T e PR R I T e T

A s

4.7 CUTOUT REINFORCEMENT

4.7.1 Typical Design Situations

Cutouts are provided for access and are assumed to be hexagonal in shape

to match the grid. It is assumed that the plate is uniaxially loaded.

/ 1
wr/ —
\/ -

CUTOUT IN ISOGRID

Although the grid hole is hexagonal, the bar pattern around the hole will
concentrate the forces at the bars and the stress concentrations at tae
nodes should be of the order of secondary stresses. The analysis used the
solution of G. Kirsch for the stress around a circular hole in generalized

plane stress, Reference 2-2.

It should be noted that the use of rectangular or square cutouts in isogrid

is inefficient. Large doublers are required to redistribute the load around
these cutouts when it is more effective to use the hexagcnal rib pattern
already provided by isogrid, stiffening these ribs if required. In additions,
if circular holes are needed, the skin material should be removed to the rib,
again making a hexagonal cutout, to prevent stress concentrations aad pos-

sible tearing of the unsupported skin.

4.7.2 Method of Optimization

The Kirsch solution, in polar coordinates, is

4.7.001




M
o -
COORDINATES AND LOADING
2 2 4
= g 2 g 42 ., 22
"rr"2<l' 2)+2<1 4 2«)34)cos29 (4.7.1)
r r r
o -31+12— o (1,322 26 4.7.2
80 - 2 2 |- zZ\' 174 )ces (4.7.2)
r r
o a.2 at
e "2 (l + 2':'2‘ - 3:2 >s1n 26 (4.7.3)

where o is the nominal stress and a is the hole radius.

In order to apply the solution to isogrid, it will be necessary to express

(4.7.1)-(4.7.3) in cartesian coordinates to obtain the bar stresses.

Consider the rotation of axes,

2 ’“

COORDINATE AXES
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. . . . i
Define the direction cosines, aj,

a = cos B = ¢
X

r .
a = 8in 6 = s
)’
ae = -sin 6 = =-s
x
a.9 = cos O = ¢
Yy

The transformation equations are:

o = 0 a a a’ + o, a a +
XX rr X x re X 0r x
_ 2 2
= Grr c - 2 Ure sc + treas
= ¢ _aal + ¢ _a ae + o, a a +
ny rr x y réo x vy ér
2
= (o -cee)sc+ce(c -8)
o = 0 a a + ¢ ar a.e + 0 a a +
vy rr y 'y re y vy er
- 2 2
= r s 4+ Zcre sc + ceec
Now define the quantity,
a _
T~ &
The eq. (4.7.1)-(4.7.3) become,
2 _ 2 2 .. 4 2 2
o_c'rr-(l-g)+(l-4§ + 36 7) (¢ -8")
4.7.003
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afery
q
n

oo = (1+E5 - (1+3e%) (2. 8%

%"re = -(1+2g2-3g4) (2 sc)

Multiplying by the plate thickness and using (4.7.5)-(4.7.7) these become,

EN = 2+8%0-6c%+165%cH) + €1 (3. 2462 D (4.7.9)
-":foy = £2sc(6-16¢% - 12¢rsc(1-2¢H (4.7.10)
%Ny = t2(3-2c%-168%¢%) + ¢t (L3+2482c9 (4.7.11)

where (2/0) L (Z/T)Nx, etc. , Nx is stress resultant around the hole while

T is the nominal stress resultant.

Skin Stresses

The skin stresses are immediately obtainable from eq. (4.7.9)to(4.7.11)or

from eq. (4.7.1) to (4.7.3) expressed in stress resultants by substituting
into eq. (2.4.11), e.g.,

N N N
:——-—’i—— = =
Y T Tear % CThra) ey T (4.7.12)

Rib Stresses

The rib stresses for the 1 bars in the x direction are obtainable from
eq. (2.4.12).

_ 1
A T N ) (3Nx'Ny)

: ——
% ° 3t(l +a) (Ny* ﬁny)

4.7.004
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2
= -
9, 3t (11 0) (Ny V3 ny) (4.7.13)

If the 1 bars are in the y direction, exchange x and y in eq. {4.7.13).

Recommended Reinforcement

Solutioa (4.7.1) to(4.7.3) was obtainedunder the assumption of constunt plate

thickness using polar coordinates. One may expect this solution to give a

good approximation to the reinforced plate provided that the reinforcement
- does not depend upon 6 and that the variation in the r direction is not too

rapid.
For this purpose, the reinforcement will be computed along the line where

stresses are a maximum. This will be along the y axis, Reference 2-2.

Along this line, s =1 and ¢ = 0.

Along the y axis (4.7.9) to (4.7.11) become,

%Nx - 2+82 438t

:21-, xy = 0 (Principal stress requirement)

TNyt IENELY ' (4.7.14)
Skin Stress along y axis

oy = Z—t%-;,-; 2+ 8%+ 584 (4.7.15)

3T

. 3T 2
y  2t(l+a) (&

-t

T
xy

LIZM_. T mae: e s s e et -
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At the edge of the hole, ¢

1 and

_ 3T
% Tt ta) (4.7.16)
o = T = 0 (Boundary condition)
y xy
1 Rib Stress along y axis
From eq. (4.7.13) and (4.7. 14)
I S 4
T tTaray F28) (4.7.17)
At the edge of the hole, ¢ = 1 and
_ 3T
Y Tt d (4.7.18)
Tt is recommended that a be held constant at nominal value, ¢« . The
required skin thickness is thus,
T 2 4
t =3 (2+E"+387) (4.7.19)
req < Ftu (l + O’o)
- A
“0 ~ th
when A = rib area = hd
A = a th
o
4.7.008
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o TREEREAEE e 2

: WA

"3

or

aohT

_ L2, agd
Breq = TF, (Tran (26 38
tu o

req

Equations (4.7.19) and (4. 7. 20) can be simplified if one notes that:

.
o Ftu(l+a)
then
- 1,2 3.4
treq - t0(1+2€ +2€)

and since

4.7.3 Worked Example

AVV
V

(4.7.20)

(4.7.2D

(4.7.22)



Let the a bars be the bars around the edge of the hole,

The ¢ and e bars are parallel to the a bars.
The skin and the b bars are in the first set of triangles around the hole.
The skin and the d bars are in the second set of triangles around the hole.

The skin and the f bars are ir the third set of triangles around the hole,

For the skin and skin-related bars, b, d, and f, the distance from the hole
will be calculated at 1/3 of the triangle height.

Assume the hole radius equal to the triangle height and the ioad in the direc-

tion of the 1 bars.

The following ratios of A/Ao and t/t0 may be calculated from eq. (4.7.21)
and (4.7.22).

Bar 3 A/A, Skin 3 t/to
a 1 | 3.0 b 3/4 1.745
b 3/4 1. 745 d 3/7 1.142
c 1/2 1.219 f 3/10 1.046
d 3/7 1. 142
e 1/3 1.075
f 3/10 1.046
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4.8 OPEN ISOGRID SHEAR WEBS
The open isogrid construction consists of a gridwork of ribs alone. This
may be desirable from the point of view of free flow of fluid or air or for

access, routing of control lines, etc.

Unlike the 0- to 90-degree grid pattern, the isogrid pattern is structurally

stable and possesses a remarkable degree of torsional rigidity.

The stress strain properties are immediately obtainable either by consider-

ing it as a sheet of solid material with Young's modulus, E, given by

| = b
E = E o (4.8.1)
E
and Poisson's ratio, v = 1/3, or by considering the limiting cases in
previous formula whent — 0.
For example, for stress calculations,
Lim t(l1 + a) = Lim (t+%?—>=% (4.8.2)
t-0 t-0
and for weight calculation,
Lim t = Lim (t+39h‘-‘->= 32 (4.8.3)
t--0 t-0

Eq. (4.8.2) may be used in eq. (2.4.12) to obtain the stresses in the ribs.

N
B

L 3 bd (3Nx - Ny) 4.8.4)
0'2’3 = -3-2-h_c-1 (NY + 3ny) {4.8.5)
i
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The twisting strength of isogrid plate may be calculated from eq. (4.8.1),
(2.2.5) and (2. 2.10).

—=.3 3
p - —E__ . 3 Ebd (4.8.6)
12 (1 - v©)
M =+ D (2x )
Xy 3 xy
M - oL Ebd’ (2X_ ) (4.8.7)
xy 32 h Xy s o

The bending and extensional stiffness of open isogrid has been verified by

test.

4.8.1 Typical Design Situations

This sort of design situation usually occurs for webs of beams, such as
wing spars, girders, etc. In some cases, the entire panel, such as a

wall, is required to carry the shearing forces. When solid members are
used, it is frequently necessary to penetrate the shear web by holes which
usually have to be reinforced around the edges to prevent edge crippling.
Isogrid provides for great fiexibility in hole location as well as considerable
redundancy in case of damaged members. Because of its high twisting
rigidity and strength, it can easily accommodate unanticipated wracking

loads.

Open grid construction for shear webs would be useful for wing rib and
spar webs when fuel containment is not a concern, for transport aircraft
floor beams where cables, wires, and ventilation ducts are routed down
the fuselage (Figure 4.8-1), and for beam systems distributing thrust from

multiple engine clusters in large space boosters.

Apart from the general need for structural efficiency, these design
situations require a structure which can be penetrated without excessive

penalty as well as one with frequent opportunities for attachment of

4.8.002




LR L SUNL L

CR169

Nxy

Figure 4.8-1. Shear Panel

support brackets or equipment components. Open construction is also

desirable for free flow of ventilation or purge gases.

Support beams extending over long spans also tend to be laterally unstable,
requiring several supports along the span to prevent rolling under load.
This requirement can be minimized if the beam is a symmetrical section
and torsionally stiff. Both of these characteristics are inherent in

integrally machined open isogrid panels.

4,8.2 Methods of Optimization

The method of optimization assumes that general instability and in-plane
Euler column buckling of the ribs are equally likely, see Figure 4, 8-1,
Under these assomptions the weight, plate thickness, d, and the ratio,

B = -al?- = rib width/grid spacing, see Figure 4.8,1, are determined.

The magnitude of the rib width, b, and grid spacing, a, are determined to
satisfy B and make the plate depth, ¢, and integral multiple of the triangle

height, h, and so that d > b to prevent Euler column buckling of the ribs out
of the plane of the plate,
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Consider a rectangular plate of length f, width ¢ and thickness d,

General Instability
From reference 2.9 for gross buckling of the plate, Ncr(l)’

k " Ed’
N = N_(1) = (4. 8. 8)
Xy cr 12(1_\}2) cZ
where ks 1s the buckling coefficient of the plate which depends upon c/f and

the plate boundary conditions.,

Using the effective modulus E and Poisson's ratio from (4.8. 1),

2 3
, _ 3n Ebd
Ncr DY) ks 2
c"h
(4.8.9)
3
= 1.10k Ebd
s
ac
since
R £
h = 3 a
Now define
. b
B =3 (4.8.10)
Eﬁd3
Ncr“) = 1.10 ks c& (4.8.11

4.8.004
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In-Plane Euler Column Buckling of Rib

From eq. (4.8.5)

Ty = 0

T = I T — (4.8.12)
2,3 YVibd XY bd

P P2,3=:hany

P, will be critical for compression.

3

The Euler column load for P3 ié,

k n EI
c

where kc is the column fixity for in-plane buckling.

Thus,

or using (4.8, 10),

- . 3
Ny = Nep(2) = 0.822 k_ Edp (4.8.13)

Equating (4.8.13) and (4.8.11),

3
4. ; 3
5> = 0.822 k_ dp

1.10k B
8 .
C S

4.8.008



i, e.,

Substituting (4. 8.14) into (4.8.1 1),

@ | Kk
N .= L10k E=5 1.31 =
y c k

(o

N g\d k.2
<2 = 1.272(—) —’i-/—
k2

Solving for 4,

1/2

1/4

(4, 8.14)

(4.8.15)

Since c is given and d is determined by (4.3.15); 3 may be computed

from d/c and eq. (4.8.14).

The equivalent weight thickness, t, is determined using eq. (4.8.3) and §.

T-3bd_ vi d
h a

T -2vY3 pd

4.8.000
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Since both p and d have been determined, t has been determined.

4,8.,3 Worked Example

ny = 8000 lb/in E = 10.5 (106)psi
c = 20 in
d >> ¢ and simple support boundary.
From Reference 2-4,
ks = 5,35
Since eq. (4.8.4) and (4. 8.5) show that the 1 bars are unloaded and the

2 bars have tensile loads equal to the compressive loads in the 3 bars,

assume that the bar fixity, kc is 2,0,

Thus

k¥ - 12,40

-]

kVZ = 1,414

[of

1/2

kc . 1414 1
C 32 T TZI T 8T
8

From eq. (4.8.15),

1/
N 4
4 0.943( xx> c
Ec

611/
] 8000 (10°6)
" °'548[ 0.5 (2 ]

ol

0)

0 = 4,30 (10™2)
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d = 0. 860 ino

From eq. (4.8.14),
4.30 (107%) V1,34 (322)

0.0814 =

»
l{l

|z

From eq. (4.8.16)
t = 3.47(0.0814) (0,860) = 0.243 in.
As a check, from eq. (4.8.11},

N _ (1) = 1.1o(5.35)(10,5,(106)(0.0814) ( o.sgo)

cr 20
= 8000 lb/in
From eq. (4.8,13),

N _ (2) 0.822 (2) (10.5) (106) (0. 860) (0.0814)3

cr

it

8000 1b/in.,

For the b/a dimensions, try 4 pockets,

4h = ¢ = 20 in,,
h = 5.00 in.
a=2 h=5177in
v3
b= pa = 0,0814 (5. 77)

o
i

= 0,473 in,
4.8.008
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Since b/d = 0.473/0.860 = 0. 551, this should be sufficient to prevent
buckling &f the bars out of the plane of the figure between the nodes.

For a weight comparison with monocoque construction, for a monocoque

d,
(o]

Ed

_ o
Ncr(l) = 0,924 kl CZ

10.5 (10% (a ?)

8000 = 0.924 (5. 35) >
20
= 12.98 (10 q 3
(o]
3 3
d_ = /8 (10%) = 0.395 in.

0. 1298 (106)

The relative weights are,

0,243
. 395

= 0,616

(=]

i3
t
o
The isogrid shear panel weighs approximately 61,6 percent of the weight of
a solid sheet neglecting nodal weight,
In the case of a built-up tension field bearn, the web gage is determined by
the ultimate shear strength of the material corrected for loss of material
(about 20 percent) caused by penetrations for attachment,

For a 7075-T6 web where

F_ = 46,000 pei
su

4.8.009
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8000

N
Joxy (1) o SOUW
‘'w TF,, (o 8) {@6000)(0,8) - °+%!7

If the beam is efficiently designed, the ratio of stiffener weight to web weight

is approximately 0. 35.

- o=

Applying this correction,

t = 1.35t_ = 0.293
w

For this case, then, the relative weights are,

e
(Y]
el
w

= 0,742

c-rln-l
o
}
o
w
D
"N

Relative weights of the 3 shear web constructions are:

Shear Resistant 1.000
Tension Field 0. 742
Open Isogrid 0.61%

If the tension field design were %0 be evaluated without less of material for
attachment, that is, as an integrally stiffened structure, its weight would
theoretically be only 0,593 times that of a shear resistant web, However,
integral constructions need to be shear resistant because the interruption of
tension field wrinkles at the stiffener produces undesirably high local stress

concentrations, particularly risky when fatigue life is a consideration,
In any case, as mentioned previovsly, the continuous shear web designs

suffer severe weight penalties when, as internal structure, they must

inevitably be penetrated for useful service in a real-life vehicle,
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4,9 OPEN ISOGRID CYLINDERS IN COMPRESSION, BENDING

2w f‘ ; R

M M /'¢
F I F
<' > "

The open isogrid cylinder, consisting of a gridwork of ribs without skin, is

loaded by a resultant force, F, and resultant moment, M, at the ends of the

cylinder, The internal axial load/inch, N _, is given by
x

_ _F M
Nx = 31R + TRZ cos ¢

The maximum value of Nx occurs for ¢ = 0 degree,

¥ M

Nx (Max.) = TR + HEZ

The elastic properties of the gridwork are obtained by considering it as a

sheet of solid material with Young's modulus, E, and Poisson's ratio, v,

given by:
= b
E =E 5
vV = 1/3 (40 9. 1)

For flanged isogrid, each flange and the web is treated as a layer whose

individual modulus is given by (4. 9.1) for each b.
The rib stresses are given by eq. (4. 8.4) and (4. 8. 5).
For the 1 ribs in the x direction,

2'3

h
o = !-\—o Nx and ¢ = 0 (4.9.2)

4.9.001




where Ao is the rib cross sectional area. Ao = bd for unflanged isogrid,

For the 1 rib in the ¢ direction,

- . _h_
o % - 358 Ny
[o]
_ 2h
92,3 ° 3A N, (4.9, 3)

The preferred direction for the ribs is the 1 ribs in the ¢ direction,

4.9.1 Typical Design Situations

Typical uses for open isogrid cylinders would be for interstages and thrust
structures where accessibility is important, Isogrid slosh baffies would be
another good potential application. The open isogrid pattern will reduce the
number of parts, complexity, and ¢ost for such structures, compared to
built-up design, as well as provide a regular pattern of attachment points
for equipment. Refer to Section 5 for information on nodal geometry and

to Section 7 for information on machining of isogrid, including the nodes.

4.9.2 Method of Optimization

The methed of optimization assumes that minimum weight occurs when
general instability and Euler column buckling of the ribs within the cylindrical

profile are equally likely,

p—
SN

N

EULER COLUMN BUCKLING
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Under these assumptions, equivalent weight thickness, t, the plate thickness,

d, and the ratio of rib width, grid spacing,
_ b
B =3

are determined, The magnitude of the rib width, b, and the grid spacing, a,
are determined to satisfy B, make the triangle size an integral multiple of
the circumference and make the rib depth, d > b, the rib width, so that
local Euler column buckling of the ribs in the radial direction of the cylinder

will not ozcur.

General Instability

In Reference 2-1 it is shown that general instability due to bending may be

written in the form,

sk £L3
N (1) = 1 _E ¢t (4.9. 4)

cr - R
\,3(1-v2)

which is independent of the cylinder length.

For uniform compression, F, the cylinder is highly length dependent,

see Figure 4,2-1,

Let
N =N + N
X a b
where
I 2 = M 1
No=zmr N °© Y s Np2g N,

then it is shown in Reference 2-1 that the buckling strength of the cylinder is
independent of the cylinder length and may be given by the simple formula,

N, = N #N, = N_(1) (4.9.5)

4.9.003
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t* and E* from eq. (2.5.3) and (2. 5. 4) may be substituted into
eq. (4.9.4).

[\¥)
<

E
R VAI

Ncr(l) -

<

E T
R VAL

where Y is the "correlation factor'. In eq. (4.9.6) A and I are the

"+ransformed" area and moment of inertia,

(4.9.6)

If A0 and Io are the actual rib area and moment of inertia, then since A

and I are linearly proportional to the width, .
Ao I
Asqm o 1 %
giving,

_ 2.12YE
Ncr(l) - Rh o o

For Rectangular Stiffeners

/ ’ ;
' - =7

(4.9.7)

(4.9.8)




For All Material in Flanges

A, —
] A = 2A
o f 2
2 A d
1 = 2A (9) R A i
d o f\2 2 |
j
| ;
A 1 =A 2 d2
o o f |
i
A, —1 |
From (4.9.7), 3
]
[
_ 2,12 YE |
Ner = 7 rn Ad (4.9. 8) ?
Cnly the Rectangular Stiffeners Will Be Optimized
From (4,9.8) for Y = 0,65 and h = —Jzz-a,
2
N (1) = 0.460 Ebd
cr a
Define the ratio,
b
‘ ﬁ = -5-
then,
Egd2
Ncr(l) = 0-460 R (4-90 9)

Euler Column Buckling o. F 'bs

Assume the | ribs in the ¢ direction

From eq. (4.9.3)

- 2h .
® = 3%q Nx * ba

F’:%hN :—a—N

4.9.008




By the Euler formula,

2
p—kcn EI—k IIZEdb3
- 2 T e 2
a 12a

where kc is the column fixity.

Thus 2 3
. - vi- k,N° Edb
X a 12 a?.
k E db>
= 1.422 =< 3

a

- 3
Ncr (2) = 1.422 kc Edp (4. 9.10)

Equating (4. 9. 9) for general instability and (4. 9. 10) for Euler column

buckling, S

~

pt = 2223 ¢ (4.9.11)
Equation (4. 9. 11) for B may now be subsiituted into eq. (4.9.9)

N 2 . 0.212(0.323) g2 a°

4.9.006
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[s] ]9

N \2
14.62 k_ (E—’l.i) (4.9.12)

After d has been found from eq. (4.9.12), d/R can be substituted
into (4.9.11) and B = b/a may be determined.

Since

T =2 A~N3Bd (4.9.13)

So that the equivalent weight thickness, t, has now been determined.

4.9.3 Worked Examples

Isogrid with ﬂange s

Since this case is not optimized, it is assumed that Euler column buckling

of the bars is not critical,

N, = 9,000 1b/in

E = 10.6 (10%) psi
R = 198 in.

d = 2,00 in,

h = 10,00 in.

Y = 0,65

4.0.007




From eq. (4.9.8)

2.12 (0.65) (10.6)

Nep = 198 (10 00)— (2-00 Ay
4
9000 = 1.475 (10%) A, ‘
4
. 9.00 _ 2 |
Af = {3278 ° 0.610 in.

The equivalent weight thickness, t, is

6A |
- _ 2 6.0 i , |
t = = J5g (0-610) = 0.366 in.

For comparison with monocoque with the same y, (actually y = 0. 65, Refer-
ence 2-11 is valid for stiffened cylinders only: for unstiffened cylinders,
Reference 2-6, Y values are lower), using t, for the monoccque thickness,
from eq. (4.9.4).

Etoz
Ncr = 0,612 R
9000 = 0.612 (10.6) 10° 2 - 0328 (105 ¢ 2
- 198 o " o
2 _ 9,00 _
to = 33.8 0. 275
t = 0,524
o

The ratio of open isogrid/monocoque is,

T _ 0,366 _
t—o- = 03524 ° 0.698

4.9.008
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Unflangeu isogrid (Optimized)

Nx = 9,000 lb/in,

_ 6 .
E = 10.6 (107) psi
R = 198 in.
Y = 0.65

From eq. (4.9.12)

d Nx :
R ° 14, 62 kc ER

Asgsume kc = 2,00

2 2 2

N 3. |
x| . 9.0 (107) . [a28 008 = 1835 10712
(ER) 10. 6 (10°) (198)} [ ]

12

5
(%) _ 1462 (2)18.35 (107'%) = 537 (10712

) = 5.37 (10-10)

d _ -2
£ = 1.400(1077)

4 = 1.400 (198)10°% = 2.77 in.
From eq. (4.9.11).
g2 = 92'3626% (1.4) 1072 = 0.226 (1079
B = 00475 = 2
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Since one should have d > b, it is evident that a value of a < 40 in. would
be about right.

The circumference c, is,

¢ = 20R = 2II (198) = 1243 in.

Take 35 pockets around the circumference™

Then
_ 1243 _ .
a = g = 35,5 in,
and
b = Pa = 0,0475 (35.5) = 1.690 in. < 2.77 in,

The equivalent weight thickness is,
- bd
t = 3 - - 2 N3 B d

t

3.47 (0.0475) 2.77 = 0.456 in.

The relative t's are now:

Construction t

Monocoque 0.524 in.
Unflanged Isogrid 0. 456 in,
Flanged Isogrid 0. 366 in,

*If the spacing a, is too large, it will be necessary to check for between
frame buckling,

4.9.010
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The unflanged isogrid example shows that the grid spacing of the flanged iso-
grid may be opened up considerably, i
é
As a check on the unflanged example, substitute the derived dimension into E :
eq. (4.9.9) and (4. 9. 10). .

) 6 2.77° .
| o N_,. (1) = 0.460 (10.6) (10°) (0. 0475) =g— = 9000 lb/in.

NCr (2) = 1.422 (2.0) (10.6) (106) (2.77) (0, 0475)3

ki i al il il 24 I Nttt st ok et cnaied T ek~ il ate.

= 8950 1b/in. (close enough)

PO S T A G S

i

o ek s - R S Ll e ot el ok

49.011

j
1
%
'}
1
g’
i
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4,10 OPEN AND SKINNED ISOGRID PLATES

For stiffened plate supported or loaded locally with rectangular, circular,
triangular, or irregular boundaries, the isogrid construction possesses some
important structural advantages. Specifically, these are the high twisting
rigidity of the construction which acts to distribute the loading over a wide
region; its isotropic character so that no weak directions exist; and the
uncoupling of the bending and in plane stress resultants, M and N. These
latter two properties make it possible to immediately apply the many avail-

able solutions of classical plate theory, Reference 2-3.

4,10.1 Typical Design Situation

Some typical design situations would be doors, floers, walls, containers,
etc., in short, all flat surfaces which are subjected to bending loads. If
accessibility and free flow of fluids is required, the construction is unskin-
ned. The construction may be integral for thin plates two inches or less in
depth or it may be built up with an isogrid pattern web. Open face isogrid
sandwich plates may be constructed with mechanically attached ribs since
the web area is accessible. In such construction the reliability is high since

all areas are open for fabrication and inspection.

From the constructional point of view, lightening holes drilled out at the
centers of the grid points where the fillet material tends to build up, serve
as natural attachment points for stud insert to secure equipment and trarsfer

local loads to the pilate.

4,10.2 Analyses

Skinned Isogrid
From eq. (2.2.4) and (2.2 5),

= =D {(4.10. 1}

: ——?_-—D(zxx) (4.10.2)

4.10.001
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Solving for the change of curvature,

X 1 -vu M
x x
I W
X D(l1-v)) -v 1 M
b Yy
-— —_—_2 I~
(2 Xxy) T D(1 - v) Mxy

Using eq. (2.2.3) these become,

€x ) , Xx i 7z 1 -v M
; X D(1-v) |-v 1 M
Yy y Yy
27
Y =z - X = e —————— M
¥ o= cZ X)) T B Vay
Now define the section modulus, S, by,
D(1 2
-V
gs = 22 (4.10.3)
then,
ex 1 ] ~v M
- — x (4.10.4)
’ ES ’ ’
-v 1 M
y J y
21 +v)
ny e EE Mxy (4.10.5)

Section Moduli
The maximum fiber siresses requires the distance, Z, from the neutral axis

to the extreme fibers,




1.00

b/h

d
TRANSFORMED SECT!ON
Part Ay §i Aigi
@ t -t/2 -t%/2
©) Eh‘i d/2 bd%/2h
- - bd _ -
A—ZAl—t+h = t (1l +a)
2 2
- . _ bd - _tfabd -1
A T B gy - s 3ltTTS) (4.10.6)
The neutral axis at a distance Z, from ¢ = ¢ is given by,
7 = ZAig’j -t ad- 1
o ZAi 2 1 a
The fiber distance, Y of the skin from the neutral axis is,
- -_(t 2at o H + 1
¢ = -4z = (2 Latads ) (4.10.7)

The section modulus, Sl' of the skin is given by (4.10.7), (4.10.3) and
(2. 3.5).

2 2
- g
S| T8 ToretTd (4.10.8)
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The fiber distance, Cy of the ribs from the neutral axis is,

t 26 +ab+] »
> —— (4.10.9)

<, =d-Zo =

e

The section modulus, S,, of the ribs is given by (4.10.7), (4.10.3), and (2.3.5).

R
2 4 28+ab +1 (4.10. 10)

Note that the first factor of (4. 10.8) and (4.10.10) is the section modulus of
the skin without ribs and the second factor is a nondimensional amplification

factor due to the rib grid.

Thas for monocoque construction,

t2
ﬁ*l,a—'o, 5 —0 anqSl=-SZ:—€-
the familiar value.
Skin Stresses
From Hooke's law for the skin (2.4.6)
Tx 1 v €x
- (4.10.11)
2
l-v \
v
Ty ‘y
o= —E . yxy _ (4.10.12)

xy 2 (1 +v)

Substituting (4, 10.4) and (4. 10. 5) into this relation,

(4.10.13)
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5 A
xy S (4.10.14)

Rib Stresses

Because of the uniaxial character of the ribs, the rib stresses are given
by,

1 4 0 0] € x
o 27 2 1 ¥3 3 Yxy (4.10.15)
73 1-v3 3 <y

From (4.10. 4), (4.10.5)

X 1 0 -V'I M
1 x
Yxy 8 © ES o 2(1+v) 0 (4.10.16)
Xy
) - 9 ] M
b A v J v
Substituting (4. 10. 16) ir‘o (4. 10. 15),
( \ - \
o [ 4 0 RN EY:
X
- A VT (140
{7, & 452 (1-3v) 2V¥3 (1+v) (3-v) J Mxy \
04 L(1-3V) -2 Y3 (14v) (3-v)_‘ My :
\ \ }
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i

ORI

and since v = 1/3,

1
—J
—

1
7y 1 0 -3 Mx
oA 2 y3 2
{2f -5 |03V % . M (4.10.17) |
2 2
. 0-2v3 2 M
\ 3} . 3 3J \ y /

Section Modulus Graph

To facilitate the calculation, the section moduli are written in the form,

.2
S;p 7 -k (4.10.13)
1 1 6 l ]
\
2
= ﬂ }
Ky * 23 Ta5 71 (4.10.19) |
.2
S, 7 Fk, (4.10.20)
2 !
o 8 , ;
K2 T 3E T e T (4.10.21)

where t2/6 is the section modulus of the skin alone and

Ky = ok (2, 6)

kZ = k2 {ery &)

are the rib amplification factors in non-dimensional form which are given i

by the graphs in Figures 4,10-1 and 4, 19-2, ' i

When o -0 but § = constant #0, the ribs have constant depth but the rib § '

width becomes very small.

4.10.006 (!
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In such cases, stresses at the outstanding edge of a very thin deep rib
attached to the skin actually weakenthe structure, stresswise. These
pathological cases on the graph occur in the domain where k <1,00 and

should be avoided for stress critical structure.

Open Isogrid
In this case, the skin eq. (4.10.13) and (4,10.14) drop out, The rib

equations are now given by (4.10, 17) where SZ is given by (4.17 {0) fromthe

limiting case,

S, - Lim 5,

t -0

From eg, (4,.10,10) and (2. 3, 2),

> bel ]
[3-—1’(1 tody e oot 2y 63y —’Ld'Z)J
1

h h' h
Sl O }d‘: 2
2 dt _)h— i
2
§‘, Lim &, ?l)- l—)%‘- (4. 10,22
t -0
and

— . T‘. (4, IO,Z%)
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+.10.3 Worked Examples

Skinned iscgrid
Stiniply supported

Circular plate

R = 36 in,
q - 5 psi
Ftu = 60 ksi . \i /
E 10,7 (}07) psi e
‘ R

From R:ierence 2-3, the maximum stresses at the center of the plate are,
M =M - ——— gR

. 3.333 2
= 15 (3) 36

808 1b in

Assume 6: 10, a= 0,20

From the kl, k2 graphs,

k1 = 28.8 s
kz H 4.25
t2 28.8 2 2
bl ~--Z)-k, --—Z)—t T - 4,81t
2 ) .
4025 2 2
SZ s k2 € t - 0.710 t

Assume ribs on tension side. Then, from eq., (4,10,17)

2 go08 -
- ) ¢ : g - ()0 000
! 2 3% 0. 71088
2 2 (508) ) -2
t 310, 710) 60 000 - ‘'-267(10°7)
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t = 0,113 in
d - 6t 10 (0.113) = 1.13 in,
a = -?Td = b %
h -2 b= g95b=50
Let
b 1—% say. Then
b = 0,113 in,
h = 50 (0.113) = 5.65 in,

The grid size, a, is given by,

h. 5,05
0. 866 0, 866

a - 6.53 in

As a check on the skin stresses, from (4,10.13)

o -0 - 808 5 = -13, 150 psi,

X Y 4,81 (0.113)

The allowable skin buckling stress, Reference 2 9, is

2 2
o, 1_3_'_9”21”' (.Ea.) 2 |1.10E (-tg)
12(1- .5
- 11.10 (10.7) (10%) (9-‘-‘2)2
oop = Ll ' 6.53

35, 000 psi > 13,500

The equivalent weight thickness, U, is,

t t (1 3a)

= 0,113 (1,60; = 0,18) 1n,

410011




4,11 MINIMUM OVERALL WEIGHT FOR CYLINDER SUBJECTED
TO AXIAL COMPRESSION AND BENDING

In general, the envelope of maximum Ncr and Phurst 28 well will vary along
the length of the cylinder. Although b, d and t may be varied to reflect
the variation of load, the grid triangle height, h, must usually be held
constant, for fabrication reasons and the problem becomes that of minimiz-
ing the weight for h held constant along the length of the tank, To accom-
plish this, select NCr (i) at i points along the tank axis where Ncr is

changing most rapidly and determine the associated distance, Ai at mid-

stations between the point.
@N* LOAD ENVELOPE

N
cr (.)

cr

NCI’ {r- 1) Nc' (r+ 1)

y ////////////////%:

—

3
o

| l At Ai+1
| TANK AXIS
|

L ™
LOAD ENVELOPE

Next construct a set of graphs of T vs h as functions of p for each station,

i, for the given value of Ncr (1).

Nog GIVEN

o

t/h GRAPH

4.11.001




From the set of t, h graphs for the ith station along the tank axis, the

relative tank weight may be determined for various value of h.

Th =
n -
z YA
=1
Tﬂ'\ln
>»
: he Patin h
T {h) GRAPH

The initial value of h, called ho’ must be selected as the smallest value
of h which satisfied all the burst conditions at the n stations along the
tank axis. Since the graph of T in the neighborhood of t, (the value for
minimum weight at each station) is quite flat, considerable variation in h
mavy be allowed with only minor changes in T so that the requirement that

h remain constant over the entire tank does not impose a significant weight

penalty on the design.
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4.12 NOTEON USEOF x, y: «, » CURVES

‘ Although the o, & curves are fairly easy to interpolate along the ¢ direc-
tion, by eye, since the variation is approximately linear, it is not casy to
interpolate by eye along the o direction. This is because the variation is

approximately exponential.

It wili be found that distance in the @ direction along the curves & = 2 or
§ = 30 at the extreme edges of the graph are practically identical. Moreover,

these scales almost coincide with the portion of the x scales at the bottom

of the graph between the values x = 0,50 and x = 3.0,

A procedure which will be found to be most convenient is as follows:

A, Locate the o, ¢ point by pencil and then move up a small picce

of paper so that its edge is aligned along the 6 curve direction,

B. Mark the edge of the paper at the o, & point and also mark the

grid values of a to the left and right of the point.

C. The edge of the paper may now be transferred to the x scale with

the grid values superimposed upon the x scale values. The

L LLIN

intermediate o may now be readily interpolated on the x scales.

If the above procedure is not followed, checked calculated values of @ [rom
computed bd/th will rarely agrec with initial graph values since the graph

cannot otherwise be read with sufficient precision.

4.12.001




4.13 OFF-OPTIMUM ISOGRID

For many applications, constraints due to plate thickness availability, cost
of machining etc., require that the gridwork design be other than that
indicated by the optimum. Usually it is required that the plate thickness be
less than the optimum thickness and that the gridwork triangle size be
larger than the optimum. These are the basic assumptions underlying the

following off-optimum analysis.

4,13, 1 Method of Analysis_s

When the total plate thickness is less than the optimum and the grid triangle
size is grecater than the optimum, it follows that the rib dimensions will be

thicker than optimum and consequently not critical for rib crippling.

The critical requirements are general instability and skin buckling.

General Instability

The critical loading conditions assumed are either the spherical cap under
external pressure or the circular cylinder under combined axial compression

and bending. (Reference Subsections 4,1 and 4,2.) Thus,

N ) C ——
cr“ o R P (4.13. )
where
P R
Ncr"m' =5
C N, 260 (4.13,2)
0
for the spherical cap,
\ - 1 ___." 4 .——_.__'l
Ncr(ll)) : I\t)\ TR =5
-R
C 0.397 (e 13, %)

O

4.13.001




for the circular cylinder,

Skin Buckling

For skin buckling,

tZ
Ncr(la) = C1 Et(l+a);‘é
Cl = 3,47 (4.13. 4)
for the spherical cap, and,
C1 = 10.2 (4,13.5)
for the circular cylinder.
Collecting requirements,
2
E t p
' y = o b 4,13,
l\cr(l, Co R Y { 3,0)
t2
N {2) = C, Et{l+a) = (4.13.7)
cr { Z
h
Given: S = t+d = So (4,13.8)
Given: h I ho (4.13.9)

Equations (4. 13,6)to(4.13.9) consist of four equations for the four required
geometric dimensirns, b, d, t and h. Of these, h is already given. The

remaining three dimensions are determined as follows:

From (4.13.8)

S = t+d = t(1+6)

148 (4.13.10)

4.13.002




Substituting (4. 13.10) into (4. 13, 6),

2
- E s B
Ncr - Co R (1+6)2
Ser B
= — 2 (4.13.11)
o
| From (4.13,10) and (4, 13, 7),
l ;
N = C, E (l+ta) — — (4.13,12)
cr 1 h2(1+6)3
2
.
I\crh - l+a
Cl E SB‘ (1+6)3
Define,
Ncrhz
X = & Es% (4.13,13;
i
N R
v—‘—ﬂ"‘CESZ (4.13.14)
o
then
1+a
x = =, (4,13.15)
(1+68)
y - b, (4.13. 16!
(1+6)

This defines a mapping of the @, & domain into the x, y domain and is given

in Figure 4,13-1 on a log plot, This mapping, it may be noted, is purecly

geometric and does not depend upon the values used for C0 and Cl'

4.13.003
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1
SUMMARY OF OFF-OPTIMUM EQUATIONS ;
NORMAL PRESSURE ON CYLINDER UNDER AXIAL
SPHERICAL CAP COMPRESSION AND BENDING REFERENCE
3
Co = 0.260 0.37 p. 4.13.001 '
ci =~ 347 10.2 p. 4.13.002 ;
C2 = 0634 0.616 P. 4.13.008 1
S=d+1<S oPTIMUM
h2h oPTIMUM ,
:
\
2 ;
x = Nah? £q.4.13.13 )
ciES3 %
y = Nef i
COE s! Eq.4.13.l4 :
t = _ S ;
1+ 8 Eq.4.13.10
d = #t p.4.13.008
é
th |
b = a-F p.4.13.005 ]
AS A CHECK,
b) 2 j
Ner (RIBCRIPPLING) = C2Et (1 +@) 3 2Nt ;
!
i
‘ 41
‘ 6 7 8 i
| % 4o
i
i ;
| Figure 4.13-1. X, Y, &, § Curves :
———— A
:
4.13.004 !
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The design procedure is as follows:
A,

R T C

Calculate x and y from eq. (4,13, 13) and (4,13, 14),
B. Read off @ and 6 from the a, & graph, {Logarithmic
interpolation is required here, )

0

Calculate t from equation (4.13,10) t - Tiz

I

Calculate d from d - §t¢
E. Calculate the rib width froma, b za

als

As a check, determine rib
crippling from the equation,

2

. /by
N,B)=C,Et (1+a (F)

(4.13,17)

where

CZ = 0,634 for the

spherical cap and,

C2 = 0.616 for the

Thus all dimensions have been dete rmined.
| circular cylinder,

4.13.2 Worked Example

i
‘ Spherical cap with the following requirements:
‘ P = 33,6 psi

| cr

% R - 198 in

i

1 F, = 71.2 ksi,

. tu

F 6

I E =116 (10" )psi

An optimum design will first be obtained

holding the plate

>nd the weight penalty involved in
thickness constant while opening up the grid will he
determined,

/ 4.13.006
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S g

p - -
< - %}%(10 6y - 2.90 (10°%)
From the graph in Figure 4.1-1.
o] t .
-}-_-1(103) - 1,48, "1‘;“ = 0.00107
tu
thus
p, = 1.48(71.2) = 105.3 psi
t = 0.00107 (189) = 0.202in.
_ p F -6
N - ér tu 2.90(10-3) - 1.96(10°3)
P 1.48 (107°)
. . N (10%) _ 1.96 _ | 153
= T1.482 =~ T1.482 ~
RN Fuoneeac?hiod o,
Y 0.130 p 0.130 .48 -~ °
From the o, 6 graph in Figure 4.1-2.
e = 0.29, & = 14.6
then,
. . R _ 1,48 (1073189 _ (1005 in f
- ZFtu(lw) - 2 (1.28) - )
d = 6t = 14.6 (0.1092) = 1,594 in,
Y J0 - S 4 1 10-3 (1.594)
0.634 0. 634 .
= 0,0888 in,
A ) 4.13.008




L L LA

1t

3.47 / 3.47
h 2t = [———1 (0.1092)
N 1.96 (107°)

1

4,59 in,

as a check,

bd _ 0.0888 (1.594)
th - 0.1092 (4.59)

= 0.282

t t(1 + 30) = 0.1092 (1.846) = 0.202 in.

As a check from the off-optimum curve, Figure 4.13-1.

S = d+t = 1.594+0.,1092 = 1,703 in,
PerR 33,6 (189) .
NCr = > = 5 = 3180 lb/in,
N R 5
= 3.18 (1.89) 10 _ 0.0678
0. 260ES 0. 260 (11.6) (10%) (1.703)
Ncrhz 3.18 (10%) (4.59)° 3
x = 5 = . 3 - 0.337 (107°)
3.47 €S 3,47 (11.6) (10%) (1.703)

From the a, & curve,

@ = 0,28, & - 14.7

This checks with the previous values using the graph from Subsection 4, 1.

For the first off-optimum design,

1.703 in, h = 10,0 in,

n
"

4.13.007



then,
y = 0.0687 as before, and
-3 10.0 2 -3
x = 0,337 (10 )(74—3-;)-) = 1,60 (10 7)

From the o, & graph, Figure 4,13-1,

a = 0,085 & = 7.8
s 1,703 _ .

d = 6t = 7,8 (0.1935) = 1,510 in,

_ _th 0.1935(10.0)]
b=oqg = 0'°85[ 1.510
= 0.109 in.

-~
"

t(l + 3a) = 0.1935 (1,255)

0. 243 in,

As a check on strength,

From the 8 curve, Figure 2-1

o - 0,085 6 = 7.8, 8 = 5.2
.2
NeelD = ¢, Ex P
6 2
_ 0,260 (11.6) (10°) (0.1935)° o
= 89 .
= 3110 lb/in,
2
N_(2) = ¢ Et(l + a)-;z

4.13.008



3
] 6 (0. 1935)
= 3.47 (11.6) (107) (1.085) =55=03

= 3160 lb/in,

2
c. Et (1 + a)2s
2 32

NCI'(3)

2
- 0.634 (11.6) (107 (1.085) 0.1935 (0.109)

8050 lb/in,

Note that the rib crippling allowable, Ncr(3) is not critical,

For the secoid off-optimum design,

s = 1,703 in, , h = 15.0 in,
s = s h > ho
y = 0,0687, as before, and

-3, 15,0 2 -3
x = 0,337 (10 7) 3-._5‘7 = 3,60 (10 7)

From the a, 6§ curves, Figure 4.13-1,

a = 0,05, & = 5.6
8 1,703 _ .
t = 55 - 6.6 ° 0,258 in,

d = 6t = 5.6 (0.258) = 1.445in.

5 (0.258) (15.0)
I, 445

b - aﬁ%= 0.0

= 0,1340 in,

)
"

t(l + 30) = 0,258 (1.15) = 0.296 in,

4.13.000




Summary of results

s =d+t=1,703 1in,
h b d t a ) t
‘ * 4. 59 0. 0888 1. 594 0.1092 0,282 14.6 0,202
10,0 0.109 1.510 0.1935 0.085 7.8 0,243
0, 1340 | 1.445 0.258 0,05 5.6 0. 296 .

|
15,0
*Optimum design

Note that b increases while d decreases, This is the reason why the ribs

become non-critical.

4,13,3 Summary of Off-Optimum Equations

Normal Pressure on Spherical Cylinder Under Axial

Cap Compression and Bending Reference
c, = 0.260 0. 397 Eq. 4.13.2, ‘
4.13.3
¢y = 3.47 10,2 Eq. 4,13.4, !
4.13.5 i
¢, = 0.634 0.616 p. 4.13,005
s =d +t =< S optimum i
h 2 h optimum
N__h°
x = 3 Eq. 4.13.13 i
C,Es
1
N_ R
y = Eq. 4. 13. 14
c Es
t = — Eq. 4. 13,10 :
T+ 6 e 2 i
d = 6t p. 4. 13,005

4.13.010




Relference

b oo a0 b, 4, 13,005
As a check,

2
b
3 3 i = —— >
Ncr (Rib Crippling) C2 Et(l+a)( 3 ) 2 NCr

413.011



Section 5

NODAL GEOMETRY

The point where the isogrid ribs intersect is called a node, Figure 5-1, In
the manufacture of isogrid, extra material is left at the nodes because the
milling cutters cannot cut to the center of the intersection without cutting

into the ribs. The weight penalty of this extra material is reduced by drilling
a hole in the center of each node. These node holes are ideal points of
attachment for other structures or for fittings carrying concentrated loads,

Examples of their use in current practice are given in Section 3,

The nodal region in isogrid deserves special consideration because the nodes
are flexible and cause a local redistribution of stresses in the area, As
stated in Sections 2 and 4, the analysis of isogrid is based on ''smearing out"
the ribs so that the stiffened structure can be analyzed as a solid continuous
sheet of material with appropriate elastic properties. This method has the
advantage of being able to use the equations which have been developed for
monocoque structures while providing accurate information for the sizing of
isogrid structure. However, the ''smeared-out' analysis ignores the flexi-
bility of the nodes and its effect on the stress distribution, Thesc local
stresses may be very important in the detail design of critical areas. For

example, in an area experiencing a considerable amount of cyclic loading,
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Figure 5-1. Isogrid Node
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the stress concentrations should be determined to assess the possibility of
initiating and growing cracks which could adversely affect the service life

of the structure,

There are at least two methods which can be used to accurately determine
the local stress distribution in the nodal area. One method is to use a finite

element analysis and another is to use three-dimensional photoelasticity,

There are many excellent general references on finite element analysis
methods in the literature, e.g., References 5-1 and 5-2, which the reader
may refer to for basic information. Reference 5-3 describes NASTRAN, a
widely-used general-purpose computer code for structural analysis hased

on the finite element method. An application of NASTRAN to isogrid analysis
is described in Reference 1-2 for the Delta launch vehicle. A description of

photoelastic *nalysis can be found in Reference 5-4,

The amount of stress redistribution due to node flexibility is, of course, a
function of the geometry of the stiffening pattern and must be determined tor
each design. However, the following example from Reference 5-5 will
illustrate the cffect of flexibility for one particular geomelry. The analysis

method used was three-dimensional photoelasticity.

Two identical isogrid panels were fabricated from Hysol 4290 epoxy resin,
Both panels were loaded in uniaxial tension, one in the direction of the 0 degree
stiffening rib and the other 90 degree to the 0 degree rib, Three-dimensional
photoclastic analysis was used to determine the stresses in the panels and the
values were then compared with analysis, Reference 5-5, The panel skin
was 0.075 inch thick, The ribs were 0,045 inch thick with a flange at the

top that was 0,300 inch wide and 0.162 inch thick, The nodes were 5-inch
on-centers with a node hole of 0. 75-inch diameter. The milling cutter radius
of the ribs at the node was 0,375 inch and was 0. 248 inch at the flanges. For
this configuration, the skin stresses were approximately 30 percent greater
than "monocoque'' analysis and the rib stresses were approximately

20 percent less, For uniaxial loading, a stress concentration of approxi-
mately 2.1 times the skin stress occurred at the node, Using superposition

for a one-to-two biaxial loading, the stress concentration at the node was




ot}

1.3 times the skin stress, Finally, using superposition for a one-to-one
biaxial loading, a stress concentratio. of approximately 1,2 times the
stress in the skin away from the ribs occurred in the skin directly beneath
the 0-degree and 60-degree ribs, Other values would, of course, be found
for panels with a diffcrent geometry, For example, adding material at
the nodes of the test panels described above, could significantly alter the

results,

In addition to the local stress distributions, the bending and extensional
stiffnesses of isogrid configurations should be verified by test for designs
with very flexible nodes, e.g., very large center holes. This determination
can be made simply and eccnomically using a Lexan plastic panel subjected
to a tension load to verify the extensional stiffness and to a berding load to
verify the bending stiffness. Stiffness is, of course, essentially a gross
property of a structure and is not as sensitive to local concentration effects
as is the stress distribution. Buckling tests of Lexan isogrid cylinders,
Reference 5-7, showed excellent agreement with thecry for an isogrid con-
figuration in which the hole diameter was 60 percent of the total distance

across the node,

R T
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Section 6
TESTING

In order to verify as. umptions of the theory and assess the effect of
fabrication variables on the design, it is necessary to test representative
components and shells in small scale, subscale or full-scale size. Buckling
tests, in particular, are very sensitive to fabrication variables of a random
nature which can only be assessed by subscale or full-scale testing. On the
other hand, small scale model tests in polyvinyl chloride, or Lexan plastic
can be made virtually free of random fabrication variables, Moreover, such
Lexan model tests are non-destructive so that small, relatively cheap imodels

may be repeatedly tested to check out interaction and multiple loading affects.

6.1 MODEL TESTS
Since fabrication variable effects are generally insignificant for models, it

is recommended that verification of theoretical assumptions be made by

model tests. For example, effects of nodal geometry on the elastic con-
stants, reinforcement around holes, stress concentration around nodes,
interaction curve verification ana influence of thermal gradient on buckling
values, are all examples of tests which are best conducted on small scale
models. In some cases, where buckling effects of the order of 10 or 15 per-

cent are to be investigated, such models are the only practical means of

obtaining objective data which would be entirely masked by the random
effects of fabrication typical of iarger scale metal specimens which is of the

same order as the effect to the investigated.

Instrumentation of the models may vary widely ranging from simple load
deflection readouts to elabovate three dimensional photoelastic investigations,
Because of the low elastic moduli of polyvinyl chloride and Lexan, internal
pressure effects may be obtained by pulling a vacuum on the interior of the

model.
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Temperature control and an accurate determination of elastic moduli are
important features of model testing. The influence of glued joints may
present problems in softening the moduli of the material and should be
accounted for./,, ~

-

e

-~

The proper scaling factor for the models is also important, For models
.-“Avith uniform walls, it is necessary to obtain the correct bending stiffness,
D and extensional stiffness, K. As shown in Section 2, an equivalent
monocoque model may be substituted for isogrid using the equivalent E™ and
t*, In buckling of cylinders it may be shown that the buckling strength
depends upon the R/t and L/R ratios in a non-linear manner and upon E

linearly. Thus the proper modeling is

R monocogie - R

t onocoque * %

‘LJ" nmonocogue - ’I':

R 4 R
and

N Ncr

‘_S'IE monocoque = F—

The Ncr/E effects may thus be ratioed from the test values by analysis
while the proper R/t and I./R must be built into.the model,

Rib crippling and Skin buckling effects, of course, cannot be obtained from
equivalent monocoque models which are of value, primarily, for general

instability characteristics.

6.2 SUB-SCALE AND FULL-SCALE TESTS

Since sub-scale and full-scale tests can be very cxpensive, itis important
to examine all aspects of the influence of fabrication and peculiarities of
the test setup on the expected test results. Reference 2-12 gives a good
account of typical problems to the expected. Some of these are repeated

here for convenience.
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A, Examine the specimen carefully for bent and undersize ribs
and skins, Straighten bent ribs and patch understrength
defects. Make sure the specimen is protected from

atmospheric corrosion,

™

Check specimen for roundness aad straightness.
C. Conduct analysis to assess the effects of tolerance cn the
various modes of failure. Very local undersize regions may
be "bridged over'' by the high degree of redundancy of isogrid
provided that fatigue is not an important consideration.
D. Check bearing fit between specimen and loading head. '"High spots"
can result in large local overloads in the specimen,
E. Monitor rib crippling and skin buckling by back-to-back strain
gages located on outstanding edges of ribs and centers of skin

panels,

Back-to-back gage rc.douts on monitoring equipment should be read together

so that divergence of gages indicating local change of curvature or ribs and

skin may be directly identified.

A .

STRAIN |

LOADING
—»

NO BENDING BENDIMNG

In specimens which are weaker in rib crippling and skin buckling than in
general instability, such gage readings, properly located on the specimen,
are invaluable in predicting not only rib crippling and skin buckling but are

excellent indication of the ultimate load to be expected.



Section 7

MANUFACTURING TECHNIQUES

7.1 INTRODUCTION

To date, waffle construction, unless it is very shallow and usad for paris
with compouand curvature, has been machined in the flat and subsequently
formed. The open grid in the Orbital Workshop of the Skylab, since it
forms walls and floors, was left flat. The same would apply to beams,
frames, and wing ribs. The shallow ribs on compound curved parts are
usually chemically milled. In one known case, a small spherical segment
dome constructed for testing nnder NASA contract NAS8-11542, a compound
curved spun pari was sculptured atter forming with a template-guided hand
operated router. In general, therefore, integral structure deep enough to
be structurally competitive with built-up structure has been applied ro simple
flat or singly curved shapes - flat elements, cylinders, cones and the

slightly curved surfaces of wings and control surfaces in aircraft,

7.2 MACHINING

In the aerospace industry, integral construction generally mcans
machining. Intricate shapes are most economically produced by casting,
bu* the mechanical properties are not Competiti\)e with wrought material.
Forging properties are usually the best obtainable, but the process does not
deliver the close tolerances and thin stiffening ribs required for weight
effective structure. This is particularly true for very large structural
elements in the sizes necessary for achievement of economy and combining
enough structural features to legitimize the word "integral'. Forgings
require finish machining. Machining limitations are, there{ore; of prime
importance in the design of integral structures, especially so for waffle

construction.
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Isogrid, like all other types of waffle, 15 pocket milled. An end mill traces
the inside contour of the pocket and cleans out all the material in the center.
See Figure 7.2-1. When the stiffening ribs are flanged, a fashioned cutter
is used wherein the cutter extends beyond it shan, Figure (.2-2. These
are the two basic variations so tar emptoyed; they have provided adequate
geometric latitude to cover a wide range of design load intensitics and local

reinforcement.

Six abutting triangular pockets, with corners appropriately rounded by cutter
dimensions, define the geometry of a waffle node. When the pockets are
small and the waffle nodes large severe weight penalties result. Therefore
careful attention mist be given to nodal geometry. Holes are drilled in the
nodes to redace weight. It should be noted that other methods may be used

to make the hole, e¢.g., milling, elcctrical discharge machining.

For adequate cutter rigidity, the deeper a cutter penetrates to cut a waffle
pocket, the larger the cutter diamater must be. Rigidity is required to

obtain close tolerances or the reasonably smooth surface finishes which

CR160
CUTTER PATH DURING
FINAL POCKET SIZING CUTTER CROSS
cut SECTION (RADIUS
SMALLER THAN
CORNER RADIUS
PREFERRED)
CUTTER ROTATION
FOR “CLIMB" MILLING POCKET DEPTH _4 —
(BETTER SURFACE
FINISH, GREATER
ACCURALY ) s
— 1]
CUTTER
DIA
et

O
o

Figure 7.2-1. Machining Isogrid With Unflanged Ribs
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POCKET FIRST MILLED WITH
RIB AS WIDE AS FLANGE, AS
SHOWN IN FIGURE 7.2-1

-
3
]
7

CUTTER OVERHANG
GREATER THAN
PROJECTION OF
FLANGE BEYOND RIB

CUTTER RADIUS LESS
THAN UNDERCUT .
CORNER RADIUS ﬂ

Figure 7.2-2. Machining Isogrid With Flanged Ribs

contribute to structural fatigae resistance. Cutter diameter shoald
therefore be about 0.75 times the pocket ¢epth or 0.5 as an absolute minimum.
The smaller cutter diameters require a light finishing pass at high cutter

L]

rotational speed.

When the pocket corner radius is the same a.s the cutter radius, the cutter
path stops on a point before resuming its movement down another leg of the
triangle. During this ''dwell" a cutter, especially a small one, drags against
the wall of the pocket, chatters, enlarging the hole it occupies, and under-
cuts one of the stiffening ribs. This undesirable situation is best avoided

by making the corner radius larger than the cutter radius. The path of the
cutter centerline then describes a small radius at each «crner. Slow cutter
feed rates at the corner also contribute to better finish and accuracy

especially in numerical controlled machining.
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Both of the machining linutatioas nentioasd 1bove conspire 1o mnoreasy the
size of watlle nodes with some loss in structural efticiencey. Some weight
penalty, however, is accveptable, boecanse, as has boen meatioacd betore.
one ol !,hv functioas of structure is to support system components,  There

is a beacfit in both cost and werght i the structural system provides a pat-
tern ot prodictably located strong natural attachmeat fittings which can per-
form the support function without necessitatimg structural chmpes.  The
peomatry depicted in Figure 7.2-3 involves a nodal penalty ot about 7 pore-
cent weight increase above that ot a stiffeaing lattice whose cqavalent weght
thickness is detfined by t t (1 + a). Structural weight penalties ot 10 to

15 porcent provide cprivaltent scoondary sapport capability are not unvoannmen
in built-up structurce. 1t shouald be noted that tov very wide {riangles, addi-
tional attachmoent points may be provided by patting busses in the tlanpes ot

the tlanged ribs.

Quite otften in structures opfinuzed tor high compresswve load mtensities,
the secondary capability ot a watlle node may exceed any reganremants the

other systems impose o it. In such cases. refinements to roedace nadal

CRI&Y
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Figure 7.2-3. A Tank Wall Contiguration
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weight are in order. Electrical discharge or electro-chemical machining
may provide a means of achieving such refinement. Because the shape of
an electrode determines the shape of an impression rather than a rotating
cutter, au almost unlimited range of shapes can be produced. The designer
is cautioned, however, to apply this versatility with restraint. Sach stress-
raising configurations as keyways and spliced holes are not recommended;
nor is complete elimination of the hole with attendant sharp corners at

the rib intersections. Some practical recommendations are shown in
Figare 7.2-4.

CR169

SHAPE OF ELECTRODE MAINTAIN PROVORTIONS

OF CORNER RADII AND
HOLE IN NODE

“AS MACHINED" ~
SHAPE

SHARP CORNERS,
KEYWAYS, SPLINED
OR SERRATED HOLES
NOT RECOMMENDED

Figure 7.2-4. Elecirical Discharge (EDM) or Electrochemical (ECM) Machining
to Reduce Isogrid Nodal Size and Weight

7.3 FORMING

7.3.1 Power Brake Forming

One of the more common processes for forming simply curved surtaces is
progressive pinching in a power brake. Still cffective and often used, 1t
accomplishes its objective by successively creasing line clements of the

curved surface, Figure 7.3-1, The line clements may be parallel as in
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the case of a cylinder or converging as they are oa a coace or the surface

of a tapvered wing.

The fundamental limitation in this type ol forming is the permissible
elongation without fracture of the material being formed. Room temperature
properties apply since the final formed shape is that assumed aiter the
material springs back, considerable (and somewhat unpredictable) over-
forming is necessary. The process must therefore be carefully developed
for each stiffening configuration. In general, forming difficulties may be
expected if the plate depth exceeds abouat 1.5 percent of the final formed
radius. Internal ribs are subject to buckling at higher ratios, external
ribs are likely to crack at the nodal intersections. lLocal high pressure on
the tops of the ribs can accentuate cither of these problems. Removable
support blocks in the pockets have been successful in alleviating these

conditions, but they complicate the process.

The highest ratio of plate depth to radius so far attempted is 1.5 percent.
This was the ratio on a compression cylinder tested ander NASA Con-
tract NAS 8-26016. The ribs were external and the forming was accomp-
lished with no support blocks in the pockets, Figure 3-5. While some

of the ribs were slightly deformed in the process, they werc straightened
quite easily and adequately, Figare 7.3-2. The size and geometry of the
waffle shell is shown in Figure 7.3-3. It should be noted that the method
1sed to straighten deformed ribs depend upon the amount of deformation.
e.g. ribs can be ''bridged" to maintain column buckling capability. The
internal ribs configuration of the Thor-Delta vehicle required widening of
the stiffening ribs from 9.060 to 9.080 to avoid compression backling,
Figures 7.3-4 and 7.3-5. In this case, the plate depth was 1.04 percent

of the shell radius ot curvature,
Fortunately optimized isogrid in cases typical for space boosters and
aircraft tends to stay within thesc geometric limitations. Where simple

unflanged rib designs tend to be deeper, the depth can be reduced by

incorporating flaages.
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Although the brake forming process is in some respects more of an art than
a science, the results after a few development parts have been made, are
quite good. This has been verified by the successful prodaction of waffle
skins for the Thor-Delta boosters, the Saturn S-1V and S-1VB and the crew
compartment shell of MOL. For such work quite large and powerful equip-
ment is needed. An example of this is the 40-foot power brake illustrated

in Figure 7.3-1.
An additional forming method that may be applicable is roll forming. For
this method the isogrid pockets should be filled with a suitable filler material

to prevent buckling of the members.

7.3.2 Creep and Age Forming

A more advanced forming method, which treats the material more gently,
promises more accuracy and coasistency, and may produce parts with com-
pound curvature, is creep forming. When the part, usually aluminam,
creeps to final shape at the heat treatment aging temperature, two processcs
are performed simultaneously and the part is said to be age formed. It
should be noted that this is not a standard 'day-to-day' process but one that

must be developed by the individual user.

In this process, the part to be formed is clamped to a fixture and held at |
elevated temperature until it creeps to its predetermined final shape. /
Allowance for somc springback is made in the shape of the fixture. Sach a /
fixture and the part formed on it is shown in Figures 7.3-6 and 3-10, /
In this case, a segment of a cylindrical wall, it was found that springback

was practically eliminated and consistency improved by applying a tensile -~
force along the edges of the part. Though the final tensile elongation was /
small, allowance would have to be made in the machined shape for an
accurate production part. Where the part must assumc a final shape quite
different than its machined starting point (e.g., a 120-degrec arc), the
process may require multiple staging, either in sever! ¢reep forming

steps (preferably in the same {ixture), with appropriate consiwi~ration of
over-aging, or by initial rough forming with the power brake. Cre~p form-
ing offers, among other advantages. an opportunity to reduce residual

stresses,
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Figure 7.3 6. lsogrd in Creep Formng Fixcture

7.0012




PO Ty

2219-T37 Aluminum isogrid has been successfully formed by this process.

7.3.3 Compound Curvature

Co.npound curvature is difficult to achieve with integrally stiftened parts
mainly because a flat pattern cannot be developed for such shapes. This
means that parts machined in the flat are subject to unpredictable, and
sometimes unrepcatable, distortions. Each configuration mast therefore be
developed individually. Each curvature has special problems requiring

special solutions.

Machining after forming offers similar difficulties. Even moderate forming
leaves residual stresses in parts. Sabsequent machining, locally relieving
these stresses, causes distortioas. Tolerances are difficult, if not impos-
sible to hold. Costs are escalated by rigid - and probably multiple- holding
fixtures as well as the higher amoriization costs of the more elaborate

macauines capable of doing the work.

Fairly large contour changes can be approximated with truncated cones as
shown in Figure 7.3-7. This diagram is representative of ogive noses on
large missiles or aircraft; similar geometry defines taper of the aft end. A
very small bulge outside the straight conical line element is enough to pro-
duce an accurate faired final contour. This much double curvature should be
achievable with crecp forming. Whether such an accurate coatour is

actually worth making is a question to be raised in these circumstances.

In summary, standard manufacturing techniques have been applied to the
fabrication of isogrid structures. Machining. power-brake forming, and
creep and age forming have been used to successfully form structure which
is flat or has a single carvaturc. The forming ot compound curvature can
bo diftficult but the problems are those associated with all inteprally stittened

structures and are ao! peculiar to sogrid.

7.4 NON-DESTRUCTIVLE INSPECTTON FOR
MANUFACTURING ACCEPTANCE

Standard 1on-destructive inspoction technigues shoald be saitable tor accept-

ing manafactured isogrid paris, Fluoresceat dye pencirant was ased to
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inspect isogrid paris for Delta. The paris were handled in an antomatic
penetrant facility in which the paris were handled and the penctrant applied
automatically. Visual inspection of the paris was then used: sometimes

with 5x-10x magnification. Other inspectioa techniques may be developed

by the individual user, e.g., dye penetrant which was ased @0 look for forming

cracks in the SI1VB waffle skins.
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Section 8

LXPLRIMENTAL RESULTS FROM MODEL TESTS

Analyses of isogria as presented in this nandbook are primarily concerned with
the prediction of buckling instability and of states of stress that occur in
isogrid under the action of leads, singularly applied or applied in combination.
The validity of such analyses can only be verified by tests conducted on isogrid
structures. These tests may be either tests of full-scale metal structures or
tests an subscale models. Full-scale metal tests of structural components have
certain characteristics which make them undesirable for theory verification,
e.a., nlastic deformation upon buckling, small buckling “knock-down" factors,
and wice data scatter. During recent years, the fabrication and testing of
models, made from Lexan polycarbonate plastic, have shcwn that the use of such
qodels has several auvantages over the use of full-scale metal test models.
Tnese advantaues are summarized as follows:
a. Lexan models are relatively inexpensive compared to full-scale
metal models
b. ine larqe ratio of strain-to-yield stress of Lexan results in
elastic buckling of the models, thereby allowing the repeated
testina of a single model
¢. Past programs with Lexan models nave shown that such models
have buckling "knock-down" factors approaching unity versus
typical metal "knock-down" factors of J.v to 0.7
u. PastAuroqrams have shown that buckling data from Lexan models

nave neqligible data scatter



. Lexan can be bbnded with solvent adnesives (etnhyiene dichloride or
methylore chloride) thereby facilitating the construction of models
as well as allowing the simulation of weld joints.

f. Lexan, unlike other plastics, is an extremely tough material and does
not require speciai handling during machining or special handling of

tne completed modei.

This section will be devoted to a documentation of the results of such subscale
nlastic model tests and a comparison of the results of tnese tests with the

results from analyses as presented in Section 4 of this nandbook.

0.2 LEKLN 0ol bUCKLING TESTS OF SKINNED AND UNSKINNED ISOGRID CYLINDERS
5089tCThu Tu COMBINED LOADING OF CCMPRESSION, BENDING, AND TORSION
J.d. 1 Background
ueneraiiy, a venicie structure will be subjected to a combination of loading
i tne ‘ulfiliment of its mission objectives. As is well known, the buckling
wtab1itty of a structure under sucn loads is affected by the proportions of
tne inaividual types of loads applied to the structure at any given moment,
i.e., compression, bending, shear, torsion, and internal pressure. The marnner
in which trie joads interact to affect the buckling stability are characterized
in interaction eguations as presented in Reference 8-1. As this reference
indicates, tae interaction equations are empirically determined. It is tnerefore
imporiant L0 ass0ss tne accuracy of such equations in tne prediction of the

coL ol e o r usogeid cylinders,




Y i

v bk o veriiication ofosuen interaction equations, a prograin was conducted
consistinag of the design, fabrication, and testing of two isogrid cylinders,

ane witnout skin (unskinned) and one with skin (skinned) for the determination
of buckling behavior under the action of compression, compression-bending and

torsion,

o.2.2 oesign and Fabrication of Models

Botn cylinders were designed to buckle in general instability. This was
accomplisned using the analyses given in Section 4 of this handbook for the
skinned cylinder for compression, compression-bending, and torsion buckling

and for tne unskinned cylinder for compression and compression-bending buckling.
“orsion vucaling of the unskinned isogrid cyl inder was determined by an analy-
sis deveioped by Mcbonnell Douglas Astronautics Company. All equations employed
dre sasmariced in Table 3.2-1. In all cases, the "knock-down" factors were
taren as unity. Circumferential isogrid was used in both cylinders to minimize
riv stresses. For the case of the skinned cylinder, an external isogrid con-
fiquration was employed. No attempt was made to optimize either cylinder.
Lustomary units were used in all calculations. In this section, all results

of axperwurental and tneoretical calculations are given in both the International

©o5tem - Units and in customary units.

et aoreatica of eacn cylinder consisted of the machining of the appropriate
e contyoaratton an trree flat plates of Lexan. These plates were 5ub-
Lethy tar L Corned into curved confiqurations constituting one-third of a
S 30 .50 . ior a given cylinder, toree of these curved pieces, nereinafter
Cceneeit 7o, wcre solvent bonded such that each cylinder had three longi-

cuging, coinis.  Tne pnilosopny of the design of the longitudinal joints was

REPRODUCIBILITY OF THE
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to dewrgn a joint that would realistically simulate the weld joint of a full-
seade we tai prototype.  The final measured dimensions of tne cylinders are

snown 1n Fiqures 8.2-1 and 8.2-2. The calculated buckling stress resultants

for tnese dimensions using the equations of Table 8.2-1 are shown in Table 3.2-2.

As can ue scen fron tnis table, poth cylinders were conservatively designed to

vuckle in qeneral instability before eitner rib or skin buckling.

3.2.5 Test Set-up

Botn models were mounted in aluminum end fixtures that penetrated into the
cylinders a distance of 5.08 cm (2 inches). To assure the transfer of torsion
loaas to the cylinder, end bands were used to clamp the cylinders to the end
fixtures. Compression and compression-bending were applied to the test
cylinders by a compression test machine acting through a steel sphere located
in conical depressions in the upper end fixture. Application of the load in a
Jepression at the center of the end fixture resulted in pure compression to
the cylinder. Combined compression-bending of the cylinders was achieved by
of f-axial loading of the cylinders at depressions located approximately one-
quarter tne radius (R/4) and one-half the radius (R/2) from the cylinder axis.
ror a monocoque cylinder, such off-axial loading would correspond to an fb/fc
ratio ot u.> and 1,0, respectively, where fb is the maximum bending stress anu
fC is the axial stress. Torsion load was applied by a hydraulic jack acting
torough moment arms on the upper end fixture. The manner in which these loads
were applied is shown in Fiqure 8.2-3. As also shewn in this figure, three
load cells were employed in monitoring the loads applied to the cylinders, one
for tve axial load and two for the torsion loads. Ouring cylinder loading,

wne autputs of these cells were continually recorded on a dual pen X-Y recorder.

REPRODUCIBILITY OF THE
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S el tequence, results, and Discussion of Results

totn cylinders were initially buckled in pure axial compression and in pure
torsion to determine buckling behavior for these loadings. The resulting
ouckling patterns for the skinned cylinder are shown in Figures 8.2-4 and
3.2<5. As can be seen in Fiaure 8.2-4 the post-buckle pattern of the skinned
cylindger under pure axial compression indicated that buckles occurred in the
joints as well as in the isogrid. Subsequent tests of the cylinder, using a
dual ucan oscilioscope and electrical contacts at buckle centers, indicated
tnat tne Luckles were initiating in the isogrid rather than in the joint. The
ouci les in tne joints were therefore of no further concern. Figure 8.2-5
inaicates tnat considerable deformation to the skinned cylinder occurred in
Lorsional buck?ihgu' A subsequent examination of this cylinder indicated that
one circumferential rib had fractured and the possibility existed that other
ribs nad experienced plastic deformation, Although the fractured rib was
reparred by solvent bonding, average maximum axial load after rib fracture was
7557 % (1699 pounds) compared to a maximum load of 8095 N (1820 pounds) before
rb fracture. To prevent further damage to this cylinder, the hydraulic system
used to apply torque to tne cylinder was configured in such a manner that the
torsion load could be immediately released at the onset of buckling, thus
preventing the cylinder from undergoing large displacements. Interestingly,
the maxinuin torsion buckling load was found not to have been affected by the

rib fracture.

waal oucnling of tne unskinned cylinder indicated tnat buckling was initiated
4. .i¢ joints. Tnis problem was overcome by the bonding of longerons, shown
i iicare ©.2-6, to tne insiae and outside of the joints. These longerons nad

tne effect of qreatly increasing the bending stiffness of the joint without a

BE’PRODUCIBILITY OF THY,
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corvespomt ey ancrease in extensional stiffness. Measurements made on tensile
samples, designed to simulate the joint, indicated that the addition of the
double lonaerons increased the effective extensional stiffness of the joints
by approximately 53 percent, The buckling patterns of the modified unskinned
isogrid cylinder for pure axial loading and pure torsion loading are shown in
Figures ©.¢-7 and 8.2-8. No damage occurred to this cylinder from torsion
buckling as nad occurred for the skinned cylinder. Nevertheless, all subse-
quent tests for torsion buckling of the unskinned cylinder employed the quick

ioad release system previously described for the skinned cylinder.

A total of 54 buckling tests were performed on each cylinder to determine the
ouckling interaction of combined compression, comp-ession-bending, and torsion.
This was accomplisned by the application and maintenance of a torsion load
winile axia: load was applied until buckling occurred. Torsion loads were
varied from zero to 100 percent of maximum torsion load in approximately 20
percent increments. Axial loads were applied along the cylinder axis, for
zero bending, and at two off-axial load points (R/4 and R/2), for combined
compression-bending. To prevent anomalies in the data from local trisector
variation, ail load combinations were performed for buckling on each trisector
and tne results were averaged. The data from these tests are summarized in
tae graphs of Fiqures 3.2-9 and 8.2-10 in terms of average compression stress
ratios (\C - fL/FC where fc is the compression buckling stress and Fc is the
maxaimun compression buckling stress) and average torsion stress ratios

(n =1 ./

ot st gy Where fSt is the torsion buckling stress and Fst is tne maximum

torsion tucniing stress) as functions of the compression-bending ratio fb/fc.




1o Jdetermine the effect of the order in which loads were applied, both cylinders
were aleo loaded by application of axial compression followed by torsion. The
rosul ts of this reverse load order were essentially identical to the original

loading order.

peference 8-1 gives an interaction equation for compression, bending, and
torsion of

R, + Ry + Rgy” = 1 (8.2.1)
where Rb is the bending stress ratio. This interaction equation is plotted in
Figure §.2-11 for ratios of fb/fC of 0, 0.5, and 1. A comparison of Figure
8.2-11 with the experimental data of Figures 8.2-9 and 8.2-10 indicate that
evcellent correlation is obtained for an fb/fC ratio of zero but that the
experimental curves for fb/fC of 0.5 and 1 both 1ie above the theoretical

curves. The excellent correlation for fb/fc = 0 partially results because

the end points of the experimental results are defined to be the same as the

theoretical values, 1.e., Rc = 1 at RSt 0 and RC = 0 at Rst =1, In like

manner the end point for RSt = 1 and RC 0 is by definition the same for both

theory and experiment for the two remaining ratios of fb/fc.

The end points of the theoretical curves may be equated to the remaining

experimental end points by modifying Equation (8.2.1) as follows
2 . 2
k(Rc + Rb) + RSt =] (8.2.2)

where k = (Rc)th/(Rc)exp and (Rc)th and (R.) are the R, values for theory

c’exp
and experiment, respectively, for RSt = 0 and for the appropriate ratio of

fb/f.. A comparison of the results of Equation (8.2.2) with the experimental

..

resutts indicate excellent correlation as shown in Figures 8.2-12 and 8.2-13
for all ratios of fb/fC for both cylinders.
Bt IR p Ty
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P encellent agreoment indicates that the shape of the curves given by
Cquation (8.2.1) is essentially correct for both skinned and unskinned isogrid
cylinders,  There are a number of reasons wiy the original data varies from

tne theoretical values. These reasons will be mentioned in later paragraphs
tnat deal with correlation between theoretical and experimental buckling loads
for pure axial compression and pure torsion. The practicality of the excellent
correlation of the adjusted data is that only the end points of the interaction
curves need be ascertained in order to completely define the entire interaction

curves.

The averaqe values of axial load were 7557 N (1€99 pounds) and 7167 N (1611 pounds)

“or tne skinned and unskinned cylinders, respectively, and the average values of
the torsion loads were 479 M-N (353 ft-1bs) and 353 M-N (260 ft-1bs) for the
<hinned and unskinned cylinders, respectively. The comparison of these measured
values with the theoretical values of Table 8.2-2 require the reduction of the
total loads to equivalent stress resultants. This is necessary in that the
cylinder joints supported a portion of the load applied to the cylinders. This
}eductxon is relatively straight-forward for exial compression in that a uniform
axial strain may be assumed by virtue of the rigid aluminum end fixtures. Given
a uniform axial strain, the stress resultant in the isogrid may be shown to be

- .
W= <Lt (14 a) (8.2.3)

cr A
where o 15 the critical buckling force per unit length, A is the total effect-
e extensional area, Pcr is the total buckling load, and t and a are as
previously defined in tnis nandbook,
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Application of the appropriate values from Fiqure a.0-1 for the skinned cylinder

and from !iqure %.2-2 for the unskinned cylinder will give

(0.728 MYy P

"

Ner (skinned) cr

(0.417 M 1) P

Ner (unskinned) cr

An average ‘oad of 7557 N (1699 pounds) for the skinned cylinder will then give
an Ncr of 550( ii/M (31.4 1b/in) corresponding to 76.1 percent of the theoretical
values of 7230 /M {41.3 1b/in). As previously mentioned, the maximum load
carried by the skinned cylinder was 8095 N (1820 1bs) prior to cylinder damage
from torsion loading. This inad corresponds to 81.5 percent of the theoretical
load. In like manner an average axial load of 7167 N (1611 1bs) for the
unskinned cylinder gave an Ncr of 2990 N/M (17.1 h/in) for 89.5 percent of

the theoretical values of 3340 N/M (19.1 1b/in).

A comparison of the theoretical torsion buckling loads to the experimental
.values is not as straight-forward as the axial case just treated in that the
relationship between torsional shear strain and the torsional load carried by
the joints is not known. If the assumption is made that the isogrid buckles
in torsion at a critical shear strain (i.e., Vcr(1) is the proportional to
Gcr(l) where ecr(l) is the critical shear strain) then the following relation-
ship can be derived that relates the experimentally determined torsional
rigigity, aefined as the shear strain per unit torque, to the theoretical
torsional rigidity ot a 360-degree isogrid cylinder.
T [(%Dth/(%)exp] T, (8.2.4)

~here T s tne expected torsion load, (O/T)th is the theoretical torsional

rigicity, (u/T)exp is the experimentally determined torsional rigidity, a.d
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1 tae tneoretical oritical torsion load. Application of tne measured and

vt

Ltheoretical torsional rigidities will give

T (skinned) 1.19 Tcr

REPRODUCIBILITY OF THE
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T (unskinned) 1.36 Tcr

For tne skinned cylinder tne calculated value of Vcr is 1460 N/M (8.31 1b/in)
(Tanle $.2-2) corrésponding to a Tcr of 374 M-N (276 ft-1bs), for an expected
torsion buckling load of 445 M-N (328 ft-1bs). The experimental value was

480 M-N (354 ft-1pbs), a value 8 percent greater than the expected value. In

Vike manner, tihe calculated VCr for the unskinned cylinder is 786 M/N (4.49 1b/in)
for a TCr of 204 M-N (151 ft-1bs), giving an expected torsion load of 278 M-N

(2ub ft-1bs). Actual torsion load was 353 M-N (260 ft-1bs), 27 percent greater

than the expected value.

Tnere are a number of pbuckling considerations that relate to the discrepancies
petween tne theoretical and experimental compression and torsion buckling loads
ana tne discrepancies between the theoretical and unadjusted experimental

interaction curves.

Tae buckiing equations, given in Table 8.2-1 and taken from Section 4 of this
handioor, assuie simply supported end conditions. Furthermore, these equations
4o not . onsiaer tne effects of prebuckling bending, rib torsional rigidity,

ca¢ .nclasicns of joints, or the festoon curve predicted by the Fliigge equations.,
for Loe aeacis tested in this program the ends of tne cylinders were clamped

' oruer to transmit tre torsion loads to the cylinders. Clamped end conditions

will incrcase tne buckling loads for both torsion and compression over simply

10
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wappor fed end conditions, Tt s Lthought that these clamped end conditions were
veaponsible tor the experimental torsion load of the skinned cylinder being

8 percent greater than the expected torsion load. As can be seer in Figure
$.2-5, the torsion buckle pattern traverses a joint in the skinned cylinder.
For the unskinned cylinder, on the other hand, the bending stiffness of the
joints was increased by the longerons to the point that buckling in the joints
did not occur, thereby restricting all buckles to the isogrid portion of the
cylirder (Figure 8.2-8). It is thought that this restriction, in conjunctior
with the effect of the clamped ends, resulted in the 27 percent increase in

tne torsion buckling load over the expected value.

The festoon curve effect, mentioned in Section 4.2, as well as prebuckling
bending, will tend to decrease the compression buckling for pure axial com-
pression. These effects do not apply to torsion loading and have little or

no effect for off-axial loading (compression-bending).

It is tnought that tnese effects were responsible for the displacement of the
unadjusted experimental data away from the theoretical interaction curves.

For example, the skinned cylinder under off-axial loading for fb/fc = 0.5

buckled at 9.5 percent of the ioad for pure axial compression but classical

twéory indicates tnat this ratio of compression bending should result in a ‘

cuckling toad of €6.7 percent of tnat for pure axial compression.

ine torsional riqidity of the isogrid ribs contribute to the load carrying
Capability of an isogrid cylinder but this effect is not included in the
equations of this handbook. In the majority of cases, such torsional rigidity

would nave a minor effect as the cross section of typical isogrid ribs is

N
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reiatively small, For the unskinned cylinder of this program, however, the
viiuth of the ribs was approxim&tely 90 percent of the deptn of the rib, thereby
giving the ribs of tnis cylinder significant tdrsional rigidity. It is thouqgnt
taat tae increase in buckling load by tihis torsional rigidity resulted in the
reiativeiy aign “cr for the unskinned cylinder of 89.5 percent of the calcu-
lated vaiue versus the Ncr of 81.5 percent of the calculated value (prior to

riu danage) of tne skinned cylinder.

Tae previous paragraphs indicate that the theory of Section 4 is conservative
in reiation to tne effects of clamped ends and rib torsion rigidity and also
for tne effects of joints, provided that buckling is not initiated in the
‘otnts. T e tueory is unconservative in relation to tihe Fligge festoon-curve
effect ana tioe effects of prebuckling bending. In practice, account is
enecatt. e of tnese ef fects, as well as the effects of structural imper-
fections oy all anciusive "knock-down" factors determined by tests on
reprosontative full-scale metal structures.

e oatove departures from the theories presented in this handbook as related
Ly s test o orogran, as well as the specifics of tne test program descrived
old, oot (Section 8.2), are preseated in detail in the engineering test

o >
)=

N

reort o rorence

.- - A

Ctotne oxperimental program indicate that tne interaction curves
Lot el adequately describe the response of skinned and
Cier oo 00 a Cyaateders subjected to combined compression, compression-

cOLdin . ang Lorsion provided the end points of the theoretical curves are

12




cogualed to Lue exper inentad data.  In practice, this means that tests must be

pertorncd on mctal specinens of a proposed configuration for buckling loads
under pure torsion and under various combinations of compression-bending. The
Jati frowm these tests combined with Equation (8.2.2) in the manner described

1 section 3.2.4 will completely define the interaction curves.

Tt enouid also be realized that effects other than those analyzed in Section 4
influence tne buckling stapbility of a configuration and that these secondary
“ifects are generally nandled by a "knock-down" factor determined by tests of

representative full-scale metal structures.

13
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Jigure 8.0-9 Experimental Interaction Curves from Skinned Cylinder
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i{rure 8.2-10 txperimental Interaction Curves from Unskinned Cylinder
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Figure 3.2-11 Theoretical Interaction Curves for Compression, Bending,
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I'{eupe 0.7-12 Comparson of Experimental Data from Unskinned Cylinder with
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